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Bekki-Nozaki Hole in Traveling Excited Waveson Human Cardiac
Interventricular Septum

Naoaki Bekki », Yoshifumi Haradai and Hiroshi Kanaiz

We observe some phase singularities in traveling excited waves noninvasively measured by a novel
ultrasonic method, on a human cardiac interventricular septum (1VS) for a healthy young male. We
present a possible physical model explaining a part of one-dimensional cardiac dynamics of the observed
phase defects on the IVS. We show that at least one of the observed phase singularities in the excited
waves on the IVS can be explained by the Bekki-Nozaki hole solution in the Complex Ginzburg-Landau
Equation, although the creation and annihilation of phase singularities on the IVS give birth to a variety of

complex patterns.

In this Letter, we show that at least one of the phase singularities in the excited waves

on a human cardiac IVS can be explained by the Bekki-Nozaki hole solution? in the Complex
Ginzburg-Landau Equation.

The Complex Ginzburg-Landau Equation (CGLE) 8-15 is well known for one of the simplest
models that account for the behaviors of nonlinear waves and the spontaneously formed
complicated patterns in the spatially extended non-equilibrium systems: the ionization waves

in the glow discharge,!® the chemical oscillations and turbulence.!” the hydrothermal nonlin-
ear waves in a laterally heated layer,'® and so on. A wide class of nonlinear waves for such
strong dispersive systems can be described by the one-dimensional nonlinear partial differeu-

tial equation which is called CGLE,
2

9 b+ & ¥+ gl
11— — aly
th p(?;l.'?' i

where ¥ is a complex function of scaled time # and space r. and with the two complex

[2 = iy, (1)

coefficients (p = p, + ipi. ¢ = qr + iq;) and a real positive constant 4. It is noted that CGLE
is represented by the full coefficients without rescaling in order to make a direct (-ompnrisuul
between the observed data and the exact solutions of CGLE.
One of the exact solutions of CGLE connects two different patterns specified by the asymptotic
wavenumbers and a phase-jump between two pattemns, which is called the Bekki-Nozaki
(BN) hole.” However, very few experimental investigations of BN hole have been reported
up to now.18, 19 The estimation of the rescaled coefficients of CGLE from the experimental
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data has been a difficult task, because some localized amplitude holes have been observed in
the hydrothermal nonlinear waves, and not adequately compared with BN hole solution in
CGLE.18

Let us first demonstrate a typical observation related to the phase singularities in the
excited waves on the IVS for a healthy young male, as is shown in Figs. 1 ~ 3, by developing
an ultrasonic noninvasive novel imaging modality with high temporal and spatial resolutions®
which shows that the propagation of the mechanical wave-front occurs at the end of the
cardiac systole by simultaneous measurement of the vibrations at many points (10,000 points)
set in the IVS. We obtained two-dimensional patterns of phase and amplitude of the excited
waves on the IVS : O(z,y,t) and A(r,y,t) = |¥(z,y,t)|, where z-axis denotes the Line
(beam) direction and y-axis does the circumferential (depth) direction. Indeed, the observed
data of phases and amplitudes demonstrate a variety of complex patterns, which include a

20 Our interest is, however, focussed on one-

zigzag pattern and the target waves on the IVS.
dimensional cardiac dynamics of phase singularities on the IVS, which may be viewed as

a one-dimensional generalization of a core of two-dimensional target pattems .6, 20 For the

Phase(deg]

1424.7 \
1421.1 //‘5-29
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THC{ine] 141}‘\/ 13

12. .
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Fig. 2. (Color online) Observed local phase profile ©(x.t) [deg] on the IVS with a phase-jump at
x4 = 10.5mm] in the Line direction for 1415.7 < ¢ < 1424.7 [ms] and 3.19 < r < 16.95 [mm]. We

can clearly observe a profile of traveling phase-jump.
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Fig. 3. (Color online) Observed amplitude profile A(x,t) near the phase-jump at z, = 10.5[mm] in
the Line direction for 1415.7 < ¢ < 1424.7 [ms] and 3.19 < x < 16.95 [mm]. We can clearly observe
an amplitude-hole with phase singularity and obtain the velocity of the amplitude-hole (See eq.
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Fig. 4. (a) A snapshot of observed phase-jump near the local point r, = 10.5 [mm] at a fixed time
= 1421.1. Circle denotes the phase of excited waves ©(z.t) [deg]. We obtain the asymptotic
wave-numbers &y = 0.13 [mm~—1], ko = —0.05 (mm™!]. and the phase-jump &p, = 2.9 [rad]. ()
A snapshot of observed amplitude hole and the Bekki-Nozaki (BN) hole with the coefficients €.
Triangle denotes the amplitude hole A(xz.t) for the fixed time t+ = 1421.1. The curvature near
the observed hole defined by eq. (11) is |7| = 0.39 [mm~?!] and the curvature near BN hole is

5| = 0.4031.
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As is shown in Fig. 2, we can obtain a pair of asymptotic local wavenumbers ij( ji=12)

defined by

= 1 /T° O(xa,t) —e(m,t)dt’ )
-1 Jp, Ty — I
where &y for #; < 79 < ), and ky for 7, < 71 < xo during 7} < t < T, respectively. A
position of phase singularity (hole) is denoted by z;, and a life-time of hole in our case is
about 10 [ms] for a very slow speed of hole. We also define a phase-jump G,

Oob = eliqrg():gg O(r —xj, — €,t) — O(x — xp + €,1)|, (4)
where the phase ©(z,t) is linearly extrapolated at a fixed time. Figure 2 shows a typical
one-dimensional phase ©(z,t) [deg] at a certain small region (3.19 < z < 16.95 [mm] and
1415.7 < t < 1424.7 [ms]). From Fig. 2 and eq. (4), we can observe a phase-jump G, = 2.9
[rad].

Next, let us define a position z’ of minimum amplitude at time ¢; and a position z” of
minimum amplitude at time 9, then, in a uniform lincar motion of phase singularities, we
have its velocity ¢, [mm/ms] defined by

-
b _ 5
= 1—F (5)

As is shown in Fig. 3, we can observe a propagation of the phase singularity on the IVS and
we have é, = —0.08 [mm/ms] from eq. (5).

Finally, from egs. (3) and (4), as is shown in Fig. 4, we have obtained the following
fundamental physical quantities related to BN hole : (i) a pair of asymptotic local wavenumbers
k1 =0.13+0.01 [mm~!] and ky = —0.05 + 0.005 [mm™!], (ii) the phase-jump &op = 2.9 + 0.1
[rad], and the curvature defined by eq. (11) near the hole |#| = 0.39 £ 0.02 [mm™']. Here
the curvature does not mean the reciprocal of its radius. On the other hand, from eq. (5).
(iii) we have also obtained the velocity of phase singularity ¢, = —0.08 + 0.01 [mm/ms] for
1415.7 < t < 1424.7 [1s], as is shown in Fig. 3. A set of observations obtained from the data
(iii) we have also obtained the velocity of phase singularity &, = —0.08 = 0.01 [mm/ms] for
1415.7 < t < 1424.7 [ms], as is shown in Fig. 3. A set of observations obtained from the data
(2) is represented by

Koo = {ky, k2. ¢.60. |R|} € R". (6)

Similarly, we have observed another traveling amnplitude holes at many points in y-axis
(circumferential direction) as well as in r-axis (beam direction) and two-dimensional target

N
waves on the [VS.20
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Solving the reality condition in the bilinear form of CGLE,”!2 we have an important

parameter o mentioned previously,

a=-3+/P+2 (p= Ep—r(h + P )- (M
2prgi — pigr
¢= {Prepi: (Ira’li.,‘Y} € ]Rs, (8)

where p; < 0 and ¢; > 0. Algebraic condition in CGLE uniquely determines ki, k2. ¢p,
arg(be/by) and |ba/b1| after algebraic manipulations.

The velocity of propagating BN hole is given by
o= B L (k4 k). (9)
{3

We have a phase-jump ( 0 <

o = arg|

Pi 1
2fﬂmm—mwr+jm%+mmﬁMﬁ—

arctan[ %
Pi 1 .
(q) lqg |2n (1 + ;;5)11712;{2_

Il

(10)

where k1 = ky £ ka. It is noted that this phase-jump connects discontinuously two different
patterns specified by wavenumbers by and ks.
The curvature near the hole is given by

k= —k_/(2a). (11)

We also obtain analytically the ratio
1

l | (51 +82) 2 4 (g —ta2)? i (12)
(51— 52)2 + (t1 + 12)? B
where
Pr qr Pi
S1 = pik4.82 = (— - p,')h”_, t1 = pi—Ky.to = (pr+ —)H_.
« qi (v
Asymptotic wavenumbers k; and k» satisfy
(e )2 .2
K K=
Ke)” | () g (13)

2
HT !L§
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4K2
3apilq|*
(1 + a?)qi(prgi — pigr)

Ll

1+

4K2,
3gi|pf?
Qpi(pr‘Ii - Pigr)
where a? and a3 are positive constants on account of the real condition and Ky, = v/7/(—pi)

(]7,' < 0).
The Bekki-Nozaki hole solution” is given by

Wz t) = b1 exp(r€) + by exp(—KE)
exp(x€) + exp(—r§)

i €
exp [%/ (k4 + k—tanh kx)dr — iQt], (14)

where £ = z — ¢pt and Q = p, K2, — ch(kiks + K2)/(k1 + k2). Equations (9) and (13) give
the algebraic relation between the velocity (c;) and the asymptotic wavenumbers of BN hole
solution with €. It is noted that the family of BN hole solution can be parametrized by the
velocity of BN hole, as is shown in Fig. 5.

Also, equation (14) gives the following inequality

Msech%nﬁ)[exp(n() - l%' exp(—l{f)]2 < Jvf?

< I8 et ) [expng) + |12 2| exe(-ne)] " (15)

'e have observed two different patterns specified wavenumbers ky and ks near the phase
defect, and the phase-jump between two patterns. The phase-jump occurs at rp, = 10.5[mm],
as is shown in Fig. 2 and Fig. 3. the amplitude A(r,t) = [¢(r.t)| of excited waves decreases
and forms a dip shaped like a hole. In order to make a direct comparison between the observed

data and the exact solutions of CGLE. we must find a set of all the coefficients in CGLE.
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taking into account the Benjamin-Feir instability.!* Finally, we find all the cocfficients in

CGLE after much trial and error”

¢y = {~1.8,-2.0,0.5,1.2.0.8}. (16)

Let us show numerically that a set of data of BN hole solution (K gy ) is almost equivalent
to that of K. From egs. (7) and (15), we have a = 0.228. Since a pair of wavenumbers k; and
ko is chosen so that eq. (13) is satisfied, as is shown in Fig. 5 (a), we can obtain k; = 0.133
and kg = —0.051. Therefore, from eq. (9), we obtain the velocity of BN hole ¢;, = —0.0793. Tt
is noted that the selection of wavenumber occurs so that the phase-jump turns into BN hole.
From eq. (11), we have the curvature near BN hole || = 0.4031, as is shown in Fig. 4 ().
Substituting these parameters obtained above into eq. (10), we obtain ¢ = 2.983 [rad], as is
shown in Fig. .5 (b). From eq. (12), we have also |be/b)| = 1.02. As is shown in Fig. 5, we can

obtain consistently Kppy:

Kpn = Kop. 17)
. — oF
g o 1
£ (a) s}
g ) k=o1s3| 4
2 ©
2 02t 2
g it
Z 04 o = -00763 e = -0.0793

08060402 0 0204 0608  D300-0402 0 0204 06 08
Velocity of BN hole Velocity of BN hole

Fig. 5. (a) Asvmptotic wavenumbers ky and ko versus the velocity (c) of BN hole (=0.5 <
kp(or k2) < 0.5 and —0.8 < ¢ < 0.8). From the analytic form of BN hole solution. we obtain
ki = 0.133, k2 = —0.051 and ¢, = —0.0793. respectively. We have k(= ky + k2) = 0 in case of
cn = 0. (b) Phase-jump (o) versus the velocity (c4) of BN-hole (0 £ 0 £ 27 and —0.8 < ¢y, < 0.8).
From eqs. (7) to (13) with the coefficients €. we can obtain the value of the phase-jump o = 2.983

[rad] for cp = —0.0793. We have o = 7 in case of ¢, = 0.
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Although it is difficult to estimate all the coefficients in CGLE from the observed data,
we found all the corresponding coefficients in our case. Substitution of these coefficients into
eq. (15) gives an amplitude profile of BN hole as in Fig. 4 (b). Different boundary condition
of observed holes from BN hole explains the large deviation from BN hole for |x£| >> 1 since
we can observe BN holes only in local finite small regions on the IVS. Thus, we have shown
that at least one of the observed phase singularities in the excited waves on the IVS can be
explained by BN hole solution of CGLE with the coefficients €j,.

A variety of complex patterns of phase-defects on the IVS except for observations of

amplitude holes will be published elsewhere.?’
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a EE Q: = (pr,pi. qr' lIi, Y} € IRS'

O €y = (—1.8.-2.0,0.5, 1.2,0.8}.
Koo = (k1. k2, G, Bob. K]} € R’
Ken = Ky ky=0.13+0.01lmm -1, k; = —0.05 +0.005mm 1,
Gop=29+0.1rad. & = —0.08+0.01 mm/ms =039 +0.02mm™1.
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