
Abstract
Purpose. For noninvasive diagnosis of atherosclerosis, we
attempted to evaluate the elasticity of the arterial wall by
measuring small changes in thickness caused by the heart-
beat. The elasticity of the arterial wall has been evaluated
noninvasively by measuring the change in diameter of the
artery or the pulse-wave velocity; however, there is no
method for noninvasively evaluating the elasticity of the
arterial wall from changes in its thickness.
Methods. Employing the phased tracking method that we
developed, changes in thickness of less than 100µm were
measured in each regional area, which corresponded to the
diameter of the ultrasonic beam.
Results. The elasticity of the arterial wall could be evalu-
ated with better spatial resolution from the change in thick-
ness than from the change in diameter of the artery or
pulse-wave velocity. We therefore propose a method for
evaluating the elastic modulus of an arterial wall of nonuni-
form wall thickness.
Conclusions. In basic experiments employing silicone
rubber tubes with nonuniform wall thickness as arterial
models, the elastic moduli of silicone rubber tubes were
evaluated by measuring changes in wall thickness. These
results confirm the value of the proposed method.

Keywords atherosclerosis · change in thickness of arterial
wall · elastic modulus · small vibration on arterial wall

Introduction

The steady increase in the incidence of myocardial infarc-
tion, cerebral infarction, and similar circulatory diseases
mainly caused by atherosclerosis has become a serious
problem. It is thus necessary to diagnose atherosclerosis in
its early stage. Noninvasive evaluation of the elasticity of
the arterial wall is useful for diagnosing atherosclerosis
because atherosclerosis significantly changes the elasticity
of the arterial wall.1

Previously proposed methods for noninvasively evaluat-
ing the elasticity of the arterial wall included measuring
pulse-wave velocity and change in arterial diameter caused
by the heartbeat. The elasticity of the arterial wall is evalu-
ated using the Moens-Korteweg equation2 from measured
pulse-wave velocity or using the incremental elastic
modulus,3 the stiffness parameter,4 and the pressure elastic
modulus5 from the change in diameter.

We set out to evaluate the regional elasticity of the arte-
rial wall by ultrasonically measuring the small change in its
thickness caused by the heartbeat.6 From measurements of
pulse-wave velocity and change in diameter, the average
elasticity between several 10-cm intervals in the axial direc-
tion of the artery and that of the entire circumference,
respectively, were evaluated. On the other hand, using the
method proposed here,6,7 the change in wall thickness can
be measured in each regional area, which corresponds to an
ultrasonic beam diameter of about 1mm. If the elasticity of
the arterial wall can be evaluated using the change in wall
thickness, spatial resolution in measuring elasticity should
prove superior to measuring pulse-wave velocity and
change in diameter.

We propose a method for evaluating the elasticity of the
arterial wall from the measured change in wall thickness
produced by the heartbeat. Basic experiments employing
silicone rubber tubes as arterial models show that the elas-
ticity of the cylindrical shell can be evaluated using this
method.

Hideyuki HASEGAWA · Hiroshi KANAI
Nozomu HOSHIMIYA · Yoshiro KOIWA

Evaluating the regional elastic modulus of a cylindrical shell with
nonuniform wall thickness

Received: June 9, 2000 / Accepted: October 19, 2000

ORIGINAL ARTICLE

H. Hasegawa (*) · H. Kanai · N. Hoshimiya
Department of Electronic Engineering, Tohoku University Graduate
School of Engineering, 05 Aramaki-aza-Aoba, Aoba-ku, Sendai 
980-8579, Japan

Y. Koiwa
Department of Cardiovascular Medicine, Tohoku University
Graduate School of Medicine, Sendai, Japan

This article is translated from the Japanese version, which was pub-
lished in J Med Ultrasonics 2001;28:J3–13

J Med Ultrasonics (2004) 31:81–90 © The Japan Society of Ultrasonics in Medicine 2004
DOI 10.1007/s10396-004-0014-y



Measuring small changes in arterial wall thickness
caused by the heartbeat

To determine the change in thickness of the arterial wall
caused by the heartbeat, the velocity of the wall was mea-
sured as described below.6,7

As illustrated in Fig. 1, the received ultrasonic pulse has
a phase delay, θ(t), corresponding to the bidirectional prop-
agation between the ultrasonic probe and the target. The
phase shift, Dθ(t) � θ(t � T) � θ(t), during one pulse rep-
etition interval T, which corresponds to displacement of the
target, is estimated from two consecutive echoes.

From the phase shift Dθ(t), the velocity of the target at
time t � T/2 is obtained as follows:

(1)

where ω0 and c are the central angular frequency of 
the ultrasound waves and the speed of sound, respec-
tively. The speed of sound in tissue is assumed to be 
1540m/s.

The change in thickness, Dh(t), of the arterial wall can be
described by the difference between the displacement,
xin(t), of the intimal side of the arterial wall and displace-
ment, xad(t), of the adventitial side. The change in thickness,
Dh(t), can thus be obtained by integrating the difference
between the velocity, vin(t), of the intimal side and the veloc-
ity, vad(t), of the adventitial side as follows.
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Evaluating elastic modulus using small change in
arterial wall thickness

When an artery can be assumed to be a cylindrical shell
with uniform wall thickness

An artery without atherosclerotic plaque can be assumed to
be a cylindrical shell with a wall of uniform thickness. Under
such conditions, the incremental strain, Dεr(t), in the radial
direction at time t resulting from the pressure increment,
Dp(t), from the diastolic pressure, p0, is expressed as follows8

(3)

where � is Poisson’s ratio. Er, Eθ, and Ez are elastic moduli
in the radial, circumferential, and axial directions, respec-
tively; and Dσr(t), Dσθ(t), and Dσz(t) are incremental stresses
in the radial, circumferential, and axial directions, respec-
tively. The second and third terms on the right side of Eq.
(3) show decrements in radial strain resulting from circum-
ferential strain Dσθ(t)/Eθ and axial strain Dσz(t)/Ez, which
are determined by �, Poisson’s ratio.

In vivo, the artery is strongly restricted in the axial direc-
tion.9 Deformation of the artery in the axial direction can
therefore be assumed to be negligible [Dσz(t)/Ez � 0]. Equa-
tion (3) is thus approximated as follows:

(4)

Because of the change in internal pressure, Dp(t), caused
by the heartbeat, the arterial wall is deformed as shown in
Fig. 2.An enlarged view of the shaded area in Fig. 2 is shown
in Fig. 3, in which the internal pressure and the external
pressure (atmospheric pressure) at time t are defined by
p1(t) and p2(t), respectively.

Considering the balance of forces within a small region
of the arterial wall, as shown in Fig. 3, forces on the x-axis,
act on the arterial wall balance, as indicated by the fact that
the shaded region is symmetrical with respect to the y-axis.
The force in the y direction acting on a small region is
caused by the internal pressure, p1(t), and is expressed as
follows.
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Fig. 1. Method used to measure velocity on the arterial wall. RF,
radiofrequency

Fig. 2. Change in diameter and thickness of the arterial wall caused by
change in internal pressure



(5)

Similarly, the force in the y direction acts on the small 

region because the external pressure, p2(t), is
�2p2(t)r2(t)sinDθ. Forces in the y direction caused by the
internal pressure, p1(t), and the external pressure, p2(t),
balance the y-axis component of tension T.

(6)

Defining r2(t) as r1(t) � h(t) using the wall thickness, h(t),
tension, T, is expressed as follows.10

(7)

When h(t) � 0, Eq. (7) is approximated by the following
Laplace equation.

(8)

When tension, T, in Eq. (7) is divided by the wall thick-
ness h(t), stress, σθ(t), in the circumferential direction is
expressed as follows.

(9)

Stress p2(t) expands the arterial wall to counterbalance
the atmospheric pressure p2(t). Therefore, by adding p2(t) to
Eq. (9), stress, σθ(t), in the circumferential direction is
obtained by

(10)

Measured internal pressure, p(t), at time t corresponds to
p1(t) � p2(t). By defining Dr(t), Dh(t), and Dp(t) as incre-
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ments of the internal radius, wall thickness, and pressure
from the inner radius, r0, and wall thickness, h0, at the dias-
tolic pressure, p0, respectively, Eq. (10) can be rewritten as
follows.

(11)

In systole, the internal radius increases as a result of the
increased internal pressure [Dp(t) � 0, Dr(t) � 0].Wall thick-
ness, on the other hand, decreases.

Stress, σr(t), in the radial direction is defined as the mean
pressure between �p1(t) at the inner surface of the wall and
�p2(t) at the outer surface.

(12)

As with Eq. (10), adding stress, p2(t), that balances the
atmospheric pressure gives us stress, σr(t), in the radial
direction.

(13)

Given Dr(t) and Dh(t) sufficiently smaller than r0 and h0,
incremental stresses, Dσθ(t) and Dσr(t), in the circumferen-
tial and radial directions become increments from stresses
r0p0/h0 and �p0/2, respectively, at diastolic pressure.

(14)

(15)

When Eqs. (14) and (15) are substituted into Eq. (4), the
ratio Dp(t)/Dεr(t) of the incremental pressure to the incre-
mental strain in the radial direction can be described as
follows, with the arterial wall assumed to be incompressible
(� � 0.5).11

(16)

Equation (16) can then be expressed in the following form.

(17)

The circumferential elastic modulus, Eθ, in Eq. (17)
cannot be derived when Eθ/Er is unknown. To obtain Eθ
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Fig. 3. Balance of forces in a small region of the arterial wall



from incremental strain, Dεr(t) � Dh(t)/h0, in the radial
direction, the arterial wall must be assumed to be elastically
isotropic (Er � Eθ). Approximating Er as Eθ has the fol-
lowing effect. The circumferential elastic modulus, Eh

θ, is
defined by the following equation by approximating Er as
Eθ using incremental strain Dεr(t).

(18)

The solid line in Fig. 4 shows the elastic modulus, Eθ,
defined by Eq. (17) plotted as a function of Er/Eθ. The
broken line shows the circumferential elastic modulus, Eh

θ

defined by Eq. (18). Dp(t)/Dεr(t) is assumed to be 200kPa,
and the ratio, r0/h0, of the inner radius to wall thickness is
determined as follows. Figure 5 shows the ratio, r0/h0, of 68
carotid arteries without atherosclerotic plaque measured
using B-mode ultrasonography. The mean value of 4.7 is
used as a typical value when calculating Eθ and Eh

θ in Fig. 4.
Er/Eθ has been reported to equal 0.8 in vivo.9 The error

in Eh
θ obtained by Eq. (18) from Eθ obtained by Eq. (17) is

about 3% when Er/Eθ � 0.8. Approximating Er as Eθ thus
does not significantly influence the diagnosis of atheroscle-
rosis because the change in elasticity caused by atheroscle-
rosis exceeds 200%.1 This shows that Eq. (18) evaluates the
elastic modulus of an arterial wall of uniform thickness
using incremental strain, Dεr(t), in the radial direction.

When an artery cannot be assumed to be a cylindrical
shell of uniform wall thickness

Wall thickness becomes nonuniform and greater than that
of the normal arterial wall when the artery contains ather-
osclerotic plaque. We divided atherosclerotic plaque into
several layers (N layers) and calculated the elastic modulus
of each layer to assess the spatial distribution of the elastic
modulus.

We divided an arterial wall of thickness h0 into N layers
as shown in Fig. 6 to study the balance of forces resulting
from internal pressure, p1(t), and external pressure, p2(t), in
the shaded region of Fig. 6. As shown in Fig. 7, we assume
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that pressure in the arterial wall changes linearly from p1(t)
to p2(t) proportional to the distance from the internal
surface of the arterial wall. Pressure, pn(t), at the internal
radius of the nth (n � 1, 2, . . . , N) layer is therefore
described as follows.

(19)

As indicated by Eq. (6), the balance of forces in the y
direction in the shaded region of Fig. 6 is expressed as

(20)

where rn(t) and Tn are the internal radius and the tension
of the nth layer, respectively. By expressing rn�1(t) by rn(t)
� h(t)/N using the thickness, h(t)/N, of a layer, the follow-
ing equation is obtained in the same manner as was Eq. (7).
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Fig. 4. Relation between elastic modulus, Eθ, obtained by Eq. (17) and
anisotropy Er/Eθ. Broken line shows the elastic modulus, Eh

θ, obtained
by Eq. (18), which is derived by approximating Er by Eθ

Fig. 5. Ratio of wall thickness, h0, to inner radius, r0, for 68 human
common carotid arteries without atherosclerotic plaques. a Wall thick-
ness h0. b Inner radius r0. c Ratio, r0/h0, of the internal radius to wall
thickness



(21)

The circumferential stress, σθn(t), of the nth layer is
obtained by dividing the tension, Tn, by the thickness, h(t)/N,
of a layer.

(22)

Increments in internal radius, layer thickness, and pres-
sure from the internal radius rn0 and the layer thickness,
h0/N, at the diastolic pressure, p0, are defined by Drn(t),
Dhn(t), and Dp(t), respectively. Adding the stress, p2(t), to
counterbalance atmospheric pressure to Eq. (22), the fol-
lowing equation obtained, as with Eq. (11).
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As with Eq. (13), the radial stress, σrn(t), of the nth layer
can be expressed as follows.

(24)

Equations (23) and (24) are confirmed in the appendix.
Given Dhn(t) �� h0/N and Drn(t) �� rn0, incremental

stresses, Dσθn(t) and Dσrn(t), in the circumferential and the
radial directions of the nth layer can be obtained using the
following equations as with Eqs. (14) and (15).

(26)

As with Eq. (4), the incremental strain, Dεr(t) � N ·
Dhn(t)/h0, in the radial direction of the nth layer can be
described as follows.

(27)

where Ern and Eθn are elastic moduli in the radial and the
circumferential directions, respectively. Assuming � equal
0.5 and substituting Eqs. (25) and (26) into Eq. (27) yields
the following equation as with Eq. (17).

(28)
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Fig. 6. Small region within the arterial wall

Fig. 7. Distribution of internal pressure in the radial direction

(25)



By approximating Eθn/Ern as 1, the circumferential elastic
modulus, Eh

θn, of the nth layer is obtained as follows :

(29)

Substituting rn0 � r10 � (n � 1)h0/N into Eq. (29) yields
Eq. (30) when the incremental strain, Dεrn(t), is uniform in
the radial direction (Dεrn(t) � Dεr0(t)).

(30)

Equation (30) shows that the elastic moduli of all layers
are equivalent when the incremental strain is uniform. Fur-
thermore, substituting r10 � r0 into Eq. (29) when there is
only one layer makes it identical to Eq. (18).

(31)

Basic experiments using silicone rubber tubes

Using tubes with uniform wall thickness

The following basic experiments were carried out to
confirm that the elastic modulus of a cylindrical shell of
uniform wall thickness can be evaluated by Eq. (18). As
illustrated in Fig. 8, the change in the wall thickness of the
silicone rubber tube brought about by a change in internal
pressure generated by an artificial heart was measured using
ultrasound.The internal pressure and the drive signal of the
artificial heart were acquired simultaneously. The size of 
the tube and the speed of sound in tube A are shown in
Table 1.

The B-mode image of the silicone rubber tube obtained
using standard diagnostic ultrasonic equipment is shown at
the top of Fig. 9. The M-mode image shown in Fig. 9a was
obtained by echoes reflected from a location on the tube.
Figure 9b,c shows the drive signal of the artificial heart and
internal pressure, respectively. Velocities, vad(t), and vin(t), at
the outside and inside of the anterior wall were derived, as
shown in Fig. 9, from the received echoes, (Figs. 9d and 9e,
respectively); and the change in wall thickness, Dh(t), shown
in Fig. 9f was obtained by integrating the difference
between these two velocities.

Incremental strain, Dεr(t) � Dh(t)/h0, in the radial direc-
tion was obtained from the change in wall thickness, Dh(t),
and thickness, h0, of the wall shown in Table 1. Figure 10
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Fig. 8. Experimental setup for measuring the elastic modulus of the 
silicone rubber tube

Fig. 9. Measuring change in thickness and the internal pressure. Top
B-mode image of the silicone rubber tube obtained by standard ultra-
sonic diagnostic equipment. a M-mode image. xin(t) and xad(t) show
traces of tracking for the inner and external surfaces of the tube. b
Drive signal of the artificial heart. c Internal pressure. d Velocity signal
of the external surface vad(t). e Velocity signal of the internal surface
vin(t). f Change in wall thickness Dh(t)
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Table 1. Size, speed of sound, and elastic modulus of three silicone rubber tubes

Tube Inner Wall Speed of Incremantal elastic
radius (mm) thickness (mm) sound (m/s) modulus Einc (MPa)

Rubber tube A 4.0 1.5 992 5.7
Rubber tube B 7.5 2.5 1291 1.9
Rubber tube C 5.1 0.7 947 1.2

shows the relation between incremental strain, Dεr(t), in the
radial direction and incremental pressure Dp(t). From the
measured relation between incremental stress and incre-
mental strain shown in Fig. 10a, the slope, Dp(t)/Dεr(t), of the
stress-strain relation was obtained using the least-squares
method; and the elastic modulus, Eh

θ, was calculated as 
5.8MPa by Eq. (18).

The elastic modulus of the tube was also measured by
testing the relation between internal pressure and external
diameter to validate the measured elastic modulus Eh

θ. The
experimental setup is shown in Fig. 11. This experiment
tested the relation between internal pressure and external
diameter by increasing the internal pressure by about 5kPa
using an air pump. The internal pressure and external diam-
eter were measured using a pressure detector (NEC 9 E 02-
P 16) and a laser line gauge (KEYENCE VG-035). Using
the measured relation between internal pressure and exter-
nal diameter, the elastic modulus in the circumferential
direction was evaluated by the incremental elastic modulus,
Einc, as follows3
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Fig. 10. Relation between internal pressure and strain in the radial
direction in tube A. a Relation between internal pressure and strain in
the radial direction. b Drive signal of the artificial heart. c Internal pres-
sure. d Strain in the radial direction

Fig. 11. System used to test the relation between the internal pressure
and the external diameter

(32)

where re and Dre(t) refer to the original external radius and
the change in external radius [Dre(t) � 0].

Figure 12 shows the measured relation between incre-
mental pressure, Dp(t), and incremental strain Dre(t)/re.
From the slope, re ·Dp(t)/Dre(t), obtained using the least-
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Fig. 12. Results of testing the relation between internal pressure and
external diameter (tube A)



squares method, the incremental elastic modulus, Einc, deter-
mined as 5.7MPa by Eq. (32), agrees well with the elastic
modulus, Eh

θ, of 5.8MPa measured by ultrasound.
Similar experiments were carried out on another silicone

rubber tube with a different radius and wall thickness. The
size and speed of sound of tube B are shown in Table 1.
From experiments on tube B, Eh

θ and Einc were calculated to
be 2.0 and 1.9MPa, respectively, and are in close agreement.
These results show that the elastic modulus of a cylindrical
shell with uniform wall thickness can be evaluated by Eq.
(18) when Er can be approximated by Eθ.

When the thickness of the tube is not uniform

Experiments similar to those previously described were
conducted with a two-layered silicone rubber tube (tube C)
with a nonconcentric cross section. Tube C served as a
model of an artery with nonuniform wall thickness. The
speed of sound of the silicone rubber tube was 947m/s, and
its size is described in Fig. 13. The two layers were made of
the same material.

Figure 14c,d shows measured strains, Dεr1(t) and Dεr2(t),
in the radial direction in the inner and the outer layers,
respectively. Figure 15a shows the relation between incre-
mental pressure, Dp(t), and incremental strain, Dεr1(t), in the
radial direction of the inner layer. The elastic modulus, Eh

θ1,
of the inner layer was determined to be 1.4MPa by Eq. (29)
from the slope of the relation between Dp(t) and Dεr1(t) and
the size of the tube. Similarly, Fig. 15b shows the relation
between incremental pressure, Dp(t), and incremental
strain, Dεr2(t), in the radial direction of the outer layer. The
elastic modulus, Eh

θ2, of the outer layer was determined to
be 1.2MPa by Eq. (29), and similar values of Eh

θn were
obtained in these two layers.

To measure the incremental elastic modulus, Einc, defined
by Eq. (32), the relation between internal pressure and
external diameter was tested of a silicone rubber tube with
uniform wall thickness (tube D) made of the same mater-
ial as tube C. The size of tube D is described in Table 1.
Figure 16 shows the measured relationship between incre-

mental pressure, Dp(t), and incremental strain Dre(t)/re. It
shows that the incremental elastic modulus, Einc, was evalu-
ated to be 1.2MPa by Eq. (32), agreeing closely with the
measured values of elastic moduli, Eh

θ1 and Eh
θ2, of tube C.

These results are summarized in Table 2.
These results show that the elastic modulus in the cir-

cumferential direction can be evaluated approximately by
Eq. (29), even when the shell is cylindrical and the thickness
of its wall is not uniform.

Conclusions

We propose a method for evaluating circumferential elastic
modulus of a cylindrical shell by measuring change in its
wall thickness resulting from change in its internal pressure.
An artery without atherosclerotic plaques can be assumed
to be a cylindrical shell of uniform wall thickness. However,
wall thickness becomes nonuniform when the artery con-
tains plaques. The proposed method provides an approach
to measuring the regional elastic modulus of the arterial
wall, even when the artery contains atherosclerotic plaques.
In basic experiments, elastic moduli of silicone rubber tubes
were evaluated using the proposed method and indicated
that the elasticity of the arterial wall can be evaluated 
from ultrasonically measured changes in wall thickness.
Such a method for noninvasively evaluating the elasticity 
of the arterial wall should prove useful for diagnosing 
atherosclerosis.
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Fig. 13. Size of the cross section of silicone rubber tube C.The measure
region is shaded

Fig. 14. Strain in the radial direction (tube C). a Drive signal of the
artificial heart. b Internal pressure. c Strain in the radial direction of
the inner layer. d Strain in the radial direction of the outer layer

Table 2. Evaluation of elastic moduli of three silicone rubber tubes

Tube Eh
θ (MPa)

Rubber tube A 5.8
Rubber tube B 2.0
Rubber tube X (first layer) 1.4
Rubber tube X (secound layer) 1.2
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Fig. 15. a Relation between
internal pressure and strain in
the radial direction of the inner
layer in tube C. b Relation
between internal pressure and
strain in the radial direction of
the outer layer of tube C

Fig. 16. Relation between internal pressure and external diameter in
tube D

Appendix: confirmation of definition of stresses 
σθn(t) and σrn(t)

Even when the arterial wall has uniform thickness, it can be
divided into N layers. Mean radial stress obtained from the
sum of the stresses of N layers should be identical to the
radial stress of the entire wall defined by Eq. (13) as follows.

(33)

The mean radial stress, σr(t), of N layers can be obtained
as follows using Eq. (24).

(34)

Equation (34) turns out to be identical to Eq. (13).

1 2 2 1
2

1 2 1

2
1
2

1 2
1

2

1 2

1 2

N
N n

N
p t p t

N

N N N N

N
p t p t

p t p t

n

N

�
 �  � 

 �  

� �
 �  �  � 

 � 

� �  � 

�

( ) ( ){ }Ï
Ì
Ó

¸
˝
˛

( ) ( ) ( ){ }
( ) ( ){ }

Â

σr t p t p t( ) ( ) ( ){ } � �  � 
1
2 1 2

In the same manner, from circumferential stresses,
σθn(t) (n � 1, 2, . . . , N), of N layers defined by Eq. (23),
the mean circumferential stress, σθ(t), of the entire wall 

can be obtained by dividing the tension

of the entire wall by the wall thickness, h(t).

(35)

Equation (35) also turns out to be identical to Eq. (10).
Thus the radial and circumferential mean stresses of the

entire wall defined by Eqs. (13) and (10) can be derived
from stresses, σrn(t) and σθn(t), of each layer, theoretically
confirming Eqs. (24) and (23).
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