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Dependence of Elastic Modulus on Inner Pressure of
Tube Wall Estimated from Measured Pulse Wave

Velocity
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SUMMARY  We have proposed a non-invasive method for di-
agnosis of the early stage of atherosclerosis, namely, the detection
of small vibrations on the aortic wall near the heart by using
ultrasound diagnostic equipment. It is, however, necessary to
confirm the effectiveness of such measurement of the pulse wave
velocity for quantitative evaluation of the local characteristics
of atherosclerosis. It is well known that Young’s modulus of a
tube wall, estimated from measured pulse wave velocity, depends
on inner pressure because of the non-linear relationship between
the inner pressure and the change of volume in the tube. The
inner pressure, however, changes during the period of one heart-
beat. In this experimental study, we found for the first time that
Young’s modulus of the tube wall, estimated from the measured
pulse wave velocity, depends not only on the diastolic pressure
but also on the pulse pressure and the pressure gradient of the
systolic period.
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inner pressure

1. Introduction

We previously developed a noninvasive method to diag-
nose disorders of the cardiovascular system using ultra-
sound[1]. In the diagnosis of atherosclerosis, a major
concern is changes in arterial wall hdardness with every
stage of this disease; such changes are determined by
measuring the small vibrations which propagate on the
artery. To date, in order to obtain an index for diagno-
sis of atherosclerosis, many investigators have measured
the pulse wave velocity[2]. From the measured pulse
wave velocity, Moens-Korteweg’s equation[3] has been
frequently applied to quantitative evaluation of the elas-
tic modulus of the arterial wall. As is well known, the
pulse wave is the pressure wave propagating in the car-
diovascular system generated by beating of the heart.
The propagation velocity ¢y of the pulse wave is given
by
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where E is Young’s modulus of the arterial wall, p is the
mass density of inner fluid, r is the inner radius of the
artery, and h is the thickness of the arterial wall. Equa-
tion (1) implies that the pulse wave velocity ¢ is pro-
portional to the square root of Young’s modulus E of
the arterial wall. Hence, the stiffness of the arterial wall
is quantitatively estimated by measuring the pulse wave
velocity ¢g. It is, however, necessary to make corrections
since the pulse wave velocity ¢ and then the obtained
Young’s modulus E of the arterial wall strongly depend
on the inner pressure; the non-linear stress-strain rela-
tion of the aortic wall contributes to this dependence.
In addition, the inner pressure changes its value during
one cardiac cycle.

Numerous studies on the pulse wave and its propa-
gation velocity cg have been reported [2],[3]. The delay
time of the pulse wave propagating between two mea-
surement points, however, has been determined in the
time domain and only rising time of the recorded pulse
wave has been considered. It has been concluded that
the pulse wave velocity ¢y depends on only the dimen-
sions of the cross sectional area and Young’s modulus
E of the arterial wall and the diastolic pressure|3]. To
discuss the non-linear elastic characteristic of the arte-
rial wall, it is insufficient to consider only the rising
time of the pulse wave.

In this paper, the dependence of the pulse wave ve-
locity ¢y and obtained Young’s modulus E on the inner
pressure is experimentally evaluated by using a silicone
rubber tube. Since the inner pressure varies during one
cardiac cycle, not only the diastolic pressure but also the
pulse pressure and the pressure gradient during systole
are considered to be factors contributing to the pulse
wave velocity ¢y and Young’s modulus F.

2. Methods

2.1 Measurement of Incremental Elastic Modulus H
for the Arterial Wall

In general, an arterial wall, which has incompressibil-
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Fig. 1 Diagram showing testing of the relationship between the
inner pressure p; and the outer diameter do.

ity and a non-linear relationship between the stress and
the strain with large amplitude, is an anisotropic vis-
coelastic medium. It is difficult to accurately describe
the viscoelastic property of the arterial wall. Thus, the
quantitative estimation of the elastic modulus of the ar-
terial wall is of interest.

In our experiment, a silicone rubber tube is em-
ployed as a specimen. Its inner diameter and outer di-
ameter are d; =11.8mm and d, = 16.1 mm, respectively,
and its length is =243 mm. Let us assume that the tube
wall is an incompressible, uniform, isotropic, cylindri-
cal elastic shell. In the case that tube length is con-
stant (i.e. axial strain is negligible) by clamping both
ends of tube, to quantitatively evaluate the stiffness of
the tube wall, the following incremental elastic modulus
H(p;) [4] is employed:

Ap;  dod? pid
Hps) =2 Z o),
(s) (Adodg—df—irdg#d?

where p; is the inner pressure, d; and d, are the inner di-
ameter and the outer diameter of the artery, respectively,
and Ap;/Ad, is the gradient of the pressure-diameter
curve. The specimen has non-linearity on the stress-
strain relationship. Hence, the value of H(p;), includ-
ing the factor Ap;/Ad,, depends on the inner pressure
Pi.

To obtain the incremental elastic modulus H(p;) by
using Eq. (2), the outer diameter d, must be measured
for various values of the inner pressure p,. Figure 1
shows a schematic diagram for testing the relationship
between the inner pressure p; and the outer diameter
do. Since it is assumed that the specimen has incom-
pressibility, the inner diameter d; is calculated from the
measured outer diameter d, by

di =/ d% — d%y + d, )

where the subscript 0 indicates that the value is obtained
when no inner pressure is applied (p; =0).

2

2.2 Measurement of Pulse Wave Velocity ¢

We measure how the pulse wave velocity ¢y and the ob-
tained Young’s modulus F vary when the inner pressure
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Fig. 2 A system for measurement of the pulse wave velocity
using a ventricular assist device.

p;(t) is changed. Figure 2 shows a pulse wave mea-
surement system [5]. In our measurement, signals a4 (t)
and ap(t) of the wall vibration generated by the pulse
wave are simultaneously measured using two accelera-
tion pickups which are attached to two adjacent points
A and B on the wall surface of the specimen. From the
resultant signals, the delay time 745 of the pulse wave
which propagates from point A to B is determined in the
frequency domain by a computer. We concentrate on ex-
pansion of the tube wall in the systolic period, caused by
an increase in the inner pressure p;(t). The time interval
during the rise in pressure from the diastolic pressure to
its peak is about 30 ms, and the Hamming window with
30ms in time length is multiplied on the measured accel-
eration signals. The complex transfer function Hag(f)
from a4 (t) to ap(t) and the magnitude-squared coher-
ence function |yag(f)|? between as(t) and ap(t) are
obtained. When the pulse wave is non-dispersive, the
phase ZHag(f) of the transfer function varies linearly
against the frequency f. Thus, the delay time 745 is
obtained from the gradient d/Hap(f)/df of the phase
of the transfer function, and the pulse wave velocity cg
is calculated by dividing the distance d4p between the
two points by the resultant delay time 74p. The pulse
wave velocity ¢y is measured for various values of the
diastolic pressure pgy = min, p;(t), the pulse pressure
pp = max p;(t) — min, p;(t), and the pressure gradient
Op;(t)/0t at systole.

3. Experimental Results
3.1 Incremental Elastic Modulus H

By changing the inner pressure p;, the outer diameter d,
is measured at each pressure by using the system shown
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Fig. 4 Relationship between the inner pressure p; and the cross
sectional area S, of the lumen.

in Fig. 1. The constant length condition is satisfied by
clamping the specimen at both ends. The obtained re-
lation between the inner pressure p; and the outer di-
ameter d, is shown in Fig.3. In this figure, each plot
point shows the mean value and the error bar shows the
standard deviation of 5-time measurements. The mea-
surements have been done by using digital micrometer
(SONY p-mate M-30) and the ratio of standard devi-
ation to the mean value in 5-time measurements is less
than 1%.

Figure 4 shows the hysteretic elasticity of the speci-
men, that is, the relationship between the inner pressure
p; on the vertical axis and the cross sectional area S; of
the lumen on the horizontal axis. By assuming. incom-
pressibility of the specimen, S; is given by

2
md;

Si: ’
4

“

where the inner diameter d; is calculated by Eq. (3).
From Fig.3, it is found that the gradient Ap;/Ad, of
the inner pressure varies as the cross sectional area S; is
changed. :
Figure 5 shows the incremental elastic modulus
H(p;), obtained from the gradient Ap;/Ad, of Fig.3. It
is found that the incremental elastic modulus H(p;) of
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Fig. 5 Dependence of the incremental elastic modulus H(p,)
on the inner pressure p;.

the silicone rubber tube gradually increases as the inner
pressure p; is increased. Thus, the incremental elastic
modulus H(p;) of the specimen markedly depends on
the inner pressure p;.

3.2 Pulse Wave Velocity cg

For the same silicone rubber tube as in the previous
measurements, the pulse wave velocity ¢y is measured
to evaluate its dependence on the inner pressure p;(t).
The distance d4p between the two points A and B is
46.8 mm, and the sampling frequency is 5 kHz.

Figure 6 shows the results obtained by apply-
ing spectrum analysis to the resultant acceleration sig-
nals a4(t) and ap(t) when the diastolic pressure pg
is 50mmHg and the pulse pressure p, is 100 mmHg.
Figure 6(1) shows the resultant acceleration signals
aa(t) and ap(#). Figure 6(2) shows that the power
spectra P4(f) and Pg(f) of as(t) and ap(t). Fig-
ure 6 (3) shows the magnitude-squared coherence func-
tion |y4p(f){*. Figure 6 (4) shows the squared magni-
tude |Hp(f)|? of the transfer function. Figure 6 (5)
shows the phase ZH4p(f) of the transfer function. It is
confirmed that the transfer system of the local area be-
tween points A and B is linear because the magnitude-
squared coherence function |y4p(f)|? is almost 1 in the
frequency range from d.c. to 70Hz. From the gradient
d/Hap(f)/df of the phase of the transfer function in
this frequency range (broken line in Fig. 6 (5), which is
obtained by using the least mean square method), the
delay time T4 between two points A and B is obtained
by

— LH4p(f). (5

Thus, the obtained pulse wave velocity is g =22.4m/s.

The dependence of the pulse wave velocity ¢y on
the diastolic pressure py is shown in Fig.7. It is found
that the pulse wave velocity ¢y gradually increases as
the diastolic pressure py is increased.
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Fig. 6 The results of the spectrum analysis of the resultant ac-
celeration signals with the diastolic pressure py =50 mmHg and
the pulse pressure pp =100mmHg. (1) The resultant vibration
signals aa(t) and ap(t). (2) The power spectra P4(f) and
Pr(f) of a4(t) and ap(t). (3) The magnitude-squared coherence
function |yag(f)[?. (4) The magnitude of the transfer function
|Hap(f)|? from measured point A to B. (5) Phase ZHag(f) of
the transfer function.
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3.3 Dependence of Elastic Moduli H(p;) and £ on
Inner Pressure p;(t)

The obtained values of the elastic moduli H(p;) and F
are summarized in Fig.8. In Fig.8, Young’s modulus
E is obtained from Eq. (1), where the inner radius r
of the specimen is 6.0 mm, the thickness h of the tube
wall is 2.0 mm, and the mass density p of the inner fluid
is 1.0x 103 kg/m3. It is clear that Young’s modulus F
gradually increases as the diastolic pressure pg and the
pulse pressure p, are increased.

Figure 9 shows that the dependence of Young’s
modulus F on the pulse pressure p, for various values of
the diastolic pressure pg. Moreover, the dependence of
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Young’s modulus E on the diastolic pressure pq slightly
increases with the pulse pressure py.

Furthermore, the obtained Young’s modulus E is
larger than the resultant incremental elastic modulus
H(p;) for the diastolic pressure p; ranging from 15 to
200mmHg. This relationship between E and H(p;) is
naturally explained by the following. The dynamic elas-
tic modulus is always larger than the static one. The
incremental elastic modulus H(p;) is measured for stat-
ically applied stress; on the other hand, Young’s modu-
lus E is measured for dynamically applied stress. Thus,
it is a natural consequence that Young’s modulus ¥ is
larger than the incremental elastic modulus H (p;).

4. Discussions

With reference to Fig. 8, when the diastolic pressure pqg
is 100mmHg and the pulse pressure p, is 50mmHg,
Young’s modulus E is equal to 2.91 MPa; when pq is
50mmHg and p, is 100mmHg, however, £ is equal
to 4.04 MPa. Our major concern is what causes this
difference. It can be explained as being the result of
the waveform of the inner pressure p;(t) and the pres-
sure gradient 9p;(t)/Ot at systole. Figure 10 shows the
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waveform of the inner pressure p;(t) and its gradient
Op;(t)/0t by dashed line. For Figs.10(1) and 10(2),
the systolic pressure, which is the sum of the diastolic
pressure pg and the pulse pressure p, is the same, al-
though, the pulse pressure p, is different.

From various values of the diastolic pressure py and
the pulse pressure p,, the pressure gradient dp;(t)/0t
at systole is determined by the least square fitting to
each measured waveform of the inner pressure p;(t).
From Fig. 8§, the Young’s modulus F is also obtained
at each measurement with various values of the pres-
sure. Thus the relationship between the 9p;(t)/8t and
E is obtained. Figure 11 shows the dependence of
Young’s modulus /7 on the pressure gradient dp;(t)/ot.
In Fig.11, the measured plot points at dp;(t)/8t=0
show the incremental elastic modulus H(p;). The bro-
ken line is obtained by the least squared fitting. Young’s
modulus £ markedly increases as the pressure gradient
Op;(t)/0t is increased at systole because the relation-
ship between the stress and the strain on the viscoelastic
medium depends not only on the strain but also on the
strain velocity.
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5. Conclusions

In this paper, we measured the pulse wave velocity cq
and studied how Young’s modulus E varies with var-
ious inner pressure p;. The measurements were done
with a silicone rubber tube, which has non-linearity on
the stress-strain relationship. These results led to the
conclusion that Young’s modulus E' estimated from the
pulse wave velocity ¢y depends on the inner pressure p;.
The inner pressure p, varies even in the period of one
heartbeat. From our study, it was shown that not only
the diastolic pressure pg but also the pulse pressure p,
and the pressure gradient Op;(t)/dt at systole contribute
to Young’s modulus E obtained from the measurement
of the pulse wave velocity c¢g.

We used a small pressure detector and simultane-
ously measured the inner pressure p;(¢) at the point of
measurement, though in in vivo measurement, such an
invasive method is not desirable. Consequently, when
Young’s modulus F obtained from the measurement of
the pulse wave velocity ¢y is employed as a stiffness in-
dex of the arterial wall, it is important to correct the
inner pressure p;(t) not only by the diastolic pressure
pa but also by the pulse pressure p, and the pressure
gradient Op;(t)/8t at systole.
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