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Delayed Block Transfer Function 
in the Frequency Domain 

Hiroshi Kanai, Member, IEEE, Toyohiko Hori, Noriyoshi Chubachi, Member, IEEE, and Takahiko Ono 

Abstract- When the impulse response of a transfer system is 
long, it is difficult for the standard cross spectrum method to 
obtain an accurate estimate of the transfer function by applying 
the fast Fourier transform (FFT) with a finite length window. The 
bias error in the estimate is large especially around the resonant 
frequency of the transfer system. In this paper, therefore, we 
propose an alternative new method to obtain an accurate estimate 
of the transfer function. The delayed block transfer function is 
introduced to detect the components that are correlated to the 
signal in the input window but leak from the output window. 
Based on these transfer functions, the total characteristics of the 
transfer system are estimated accurately. In the latter half of the 
paper, we derive the theoretical expressions for the bias errors in 
the transfer functions estimated by the proposed and the standard 
methods. By thoroughly comparing the resultant expressions, 
the superiority and the usefulness of the proposed method are 
theoretically confirmed. Finally, the simulation experiments show 
the advantages of the proposed method. 

I. INTRODUCTION 
HERE has been a dramatic increase in spectrum estima- T tion research activities, especially in the past two decades, 

since the digital fast Fourier transform (FFT) algorithm was 
introduced about 25 years ago [l]. The FFT has expanded the 
role of spectral estimation from research novelty to practical 
use. Although there are many disadvantages of such FFT-based 
results, the FFT is most commonly applied to unknown signals 
in many practical fields before using other parametric tech- 
niques because the expanded orthonormal functions employed 
in the FFT are predetermined and are independent of the signal. 

Bingham et al. [4] discussed the computationally fastest 
way to estimate the power spectrum of a time series from 
the FFT performed directly on the weighted data set. Welch 
[5] proposed a method for the application of the FFT to 
the estimation of power spectra, which involves sectioning 
the records, taking modified periodgrams of these sections, 
and averaging these modified periodgrams. The weighted 
overlapped segment averaging is advocated by Nuttall and 
Carter [37], [41] to give stability and to minimize the impact 
of window sidelobes. Other references to the FFT and its 
application for power spectrum estimation may be found in 
Richards [2], Cochran et al. [3], Jenkins and Watt [6], Bertram 
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[8], Glisson er al. [SI, Cooley er al. [lo], [ 111, Oppenheim and 
Shafer [19], Yuen [29], and Amin [56]. 

In the power spectrum estimation, leakage effects arising 
in the frequency domain due to the time domain windowing 
can be reduced by the selection of windows with nonuniform 
weighting. Bertram [ 121 provided a definitive description 
of the leakage problem. Harris [30] and Nuttall [43] have 
provided a good summary of the merits of various win- 
dows. Nuttall and Carter [46] presented a spectrum estimation 
method based on lag weighting. Other references include [16], 
[XI ,  1391, [4Ol, and W l .  

As an application of these FFT-based spectrum estimation 
methods, the coherence function has been developed for a 
linear measure of causality in the transfer function between 
a pair of signals. Carter, Knapp, and Nuttall [17], [23] pro- 
posed the standard method to estimate the cross spectrum and 
the coherence function by partitioning the two signals into 
overlapping segments and computing the power spectrum of 
each segment via the FFT. The resultant power spectra are 
then averaged to reduce the bias and variance of the resulting 
estimates. The coherence function is effective in many fields 
as pointed out by Carter and Knapp [20], and it has been 
applied to system identification [17], measuring SNR and 
linear-to-nonlinear power ratio [ 171, and determining signal 
time delay [17], [18], [44]. Knapp and Carter [25] developed 
a maximum likelihood estimator (MLE) for determining time 
delay between signals based on the cross correlation, which 
is identical to one proposed by Hannan and Thomson [15]. A 
MLE for coherence is derived by Mohnkern [57]. Chan et al. 
[38] proposed a regression approach of the coherence function 
by solving the-discrete Wiener-Hopt equation. Youn er al. [45], 
[47] introduced an adaptive approach based on Widrow’s LMS 
algorithm into the estimation of the coherence function for 
nonstationary signals. A tutorial review of work in coherence 
and time delay estimation was presented by Carter [50], [55]. 
Other references for the estimation of the coherence function 
or the cross spectrum using the FFT and their applications are 
found in Jenkins and Watt [6], Carter et al. [18], Talbot [22], 
Blake [28], Piersol [31], Seybert et al. [34], Barret [35], Chan 
[48], Cadzow [51], Cusani [58] ,  and Mansour et al. [59]. The 
error analyses for their estimates are provided by Benignus 
[7], Bendat [33], Walker [42], Schmidt [49], Mathews et al. 
[52], and Gish et al. [54]. 

For the multiple input/output cases, Bendat [24], [27] pro- 
vided methods to estimate the transfer function and the co- 
herence function. Other references for the coherence function, 
partial coherence, and system identification are found in Jenk- 
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ins and Watt [6], Bendat and Piersol [13], [36], Dodd et al. 
[21], and Romberg [32]. 

In the standard method established by these enormous 
studies in literature, a transfer function is estimated by the 
ratio of the averaged cross spectrum between the input and 
output to the averaged input power spectrum. If a time window 
employed in the FFT is not long enough compared to the 
length of the transfer system response, however, a bias error 
due to the insufficiency of the time window length is generated. 
The cause of the bias error is that the signal in the output 
window does not contain the whole response to the signal 
in the input window and contains an extraneous response to 
the preceding input signal. As the system Q (quality factor) 
increases, the bias error in the transfer function estimates gets 
large especially around the resonant frequencies if the window 
length is kept constant. 

A method to determine the window length based on the 
allowable bias error limit was investigated by Ono et al. 
[60]. A coherence function obtained from the signals in the 
input window and delayed output window (called a delayed 
block coherence function ) is proposed for the detection of a 
missing signal in the output that is coherent to the input [60]. 
Based on the theoretical consideration for the delayed block 
coherence function, a method to estimate the damping factor of 
a transfer system was presented in [61]. From the estimate of 
the damping factor, an optimum window length is determined 
from the allowable bias error limit. It is, however, still difficult 
to determine an accurate estimate of the transfer function with 
a long impulse response by these studies. 

In this paper, after pointing out these problems in Section 
11, we propose in Section 111 a new method to accurately 
estimate the transfer function when the transfer system has a 
long impulse response. By thoroughly comparing the accuracy 
between the estimates obtained by the proposed method and 
the standard cross spectrum method, we derive theoretical 
expressions for the estimates of the transfer function in Section 
IV. From these expressions, the superiority and the usefulness 
of the proposed method are theoretically and experimentally 
confirmed in Sections V and VI, respectively. 

11. THE STANDARD ESTIMATION METHOD AND ITS PROBLEMS 

Let us consider a single inputlsingle output system with 
extraneous noise at the output point only as shown in Fig. 1. 
Let us assume that the input measurement r ( t )  is essentially 
noise-free, whereas the output measurement y( t )  consists of 
the sum of the ideal linear response z ( t )  to ~ ( t )  and the noise 
component n(t) .  Using the discrete expression obtained by 
sampling each signal at an interval T ,  the resultant output 
measurement is given by 

y(n)  = z(n,) + n(n)  
= h,(71) * 4 7 1 )  + n(n) (1) 

where * indicates a convolution operation, and h(n)  is an 
impulse response of the transfer system, which should be 
estimated below. Let us assume that the input signal ~ ( n )  
and the measurement noise n ( 7 t )  are stationary white noise 

Fig. I .  Signal transmission system model employed in this paper. 

and mutually uncorrelated. Let the average power of 34.) and 
n(71) be af and U:, respectively. 

By applying an MN-point discrete Fourier transform to the 
input signal z (n)  and the output signal y(n),  both of which 
are windowed, where each window has MN points in length, 
(1) is written as 

Y ( k )  = H ( k ) X ( k )  + N ( k )  (2) 

where k is an integer representing discrete frequencies, and 
the discrete spectrum X ( k )  is given by 

h 

The least squares estimate, which we denote by Hall(k),  
of the transfer function H ( k )  in (2) is obtained by the cross 
spectrum method [13], [36] such as 

where E [ . ]  and * denote the ensemble average and a com- 
pkx  conjugate, respectively. For each frequency, the estimate 
H,]l(k) minimizes the average power E[lN(k)12] of the noise 
component n( n) .  

If the system response is 1ongLompared with the window 
length, however, the estimate Hall(k) in (4) does not give 
aEurate results. This is due to the following: The estimate 
H,ll(lc) of (4) is obtained, assuming that the impulse response 
to every input pulse in a block is dropped at the end of the 
block as shown in Fig. 2(a). For example, the responses to the 
impulses ~ ( o ) ,  x (MN/2) ,  and J ( M N  - 1) are estimated so 
that they have, respectively MN-point, MN/2-point, and 1- 
point in length. These relations between ~ ( n )  and y(n) cannot 
bzexpressed by a linear system. In the least square estimate of 
Hall(k) in (4), the nonlinear transfer system is approximated 
by a linear system-As a result, the bias error in the transfer 
function estimate Hall ( k )  becomes larger around the resonant 
frequencies as the impulse response of the transfer system 
becomes longer. This bias error is caused even for the case 
of SNR = cc and for the case where the average number in 
(4) is infinite. 

111. A NEW METHOD OF ESTIMATING 
THE TRANSFER FUNCTION 

From a different point of view, let us consider the reason the 
bias error happens in the transfer function, which is estimated 
by the standard method as follows: Let us divide the input 
signal ~ ( 7 1 )  and the output signal y(n) in a section with M N  
points in length into two blocks (x1(n) and 2 2 ( 7 1 ) )  and (yl(n) 
and y 2 ( 7 L ) ) ,  respectively, where each has M N / 2  points in 
length as shown in Fig. 2(b). Using the spectra X l ( k ) ,  Y2 (k ) ,  
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I I 

M,N POINIS  

I 

(a) 

M N  POINTS 

(b) 

Fig. 2. (a) Impulse response is dropped at the end of the block in the standard 
method. (b) Illustration explaining the cause of the bias error in the estimates 
obtained by the standard method. 

Y l ( k ) ,  and Y2(k)  of these block signals, the averaged cross 
spectrum E [ X * ( k ) Y ( k ) ]  in the numerator of (4) is described 
by 

E [ X * ( k ) Y ( k ) ]  = E [ X ; ( k ) Y l ( k ) ]  + -qX;(k)Y2(k)l 
+ (k)YI ( k ) ]  + E[X; (k)Y2(k)l .  

From the causality, the third term E[X; (k )Y l  ( k ) ]  becomes 
zero. Let Ho ( k )  and H I  ( k )  be the transfer functions from one 
input block to the output block signal with the same timing 
and the one-block delayed signal, respectively. Thus, the cross 
spectrum E [ X * ( k ) Y ( k ) ]  is given by 

E [ X * ( k ) Y ( k ) l  = E[IX(k)121{Ho(k) + H o ( k )  + Hl(IC)) 

# ~ [ I X ( k ) l 2 1 { H o ( k )  + Hl(k)) 

that is, bias error is caused in the cross spectrum estimated in 
(4). From this simple example, it is found that it is significant 
to divide the input and output signals into short blocks and 
estimate the cross spectrum separately for each combination 
between the input blocks and the output blocks and then sum 
up the resultant transfer functions to obtain the total transfer 
function. In this section, based on the princip&, a new method 
is proposed to decrease the bias error in_H,n(k) of (4) and 
estimate an alternative transfer function H b k  ( k )  ranging from 
k = 0 to MN - 1 as described below. 

Let us divide the MN-point length signal into M blocks, 
where each of consists of N consecutive samples, as shown in 
Fig. 3(a). Each block is identified by the block index. When 
the system response is long, the transmission system in Fig. 1 
is represented by a multiple input/output system as shown in 
Fig. 3(b). Let an indexed H,(k )  be the transfer function (called 
the delayed block transfer function) from the input signal to 
the i-block-delayed-output signal, and let hi (n )  be the impulse 
response of H i ( k ) .  The output signal ym(n) in the mth block 
is the sum of the responses to each input signal in the preceding 
blocks and the measurement noise signal n,(n) in mth block 

N POINTS 
w------ 

(b) 

Fig. 3. When the impulse response is long, the signal transmission system 
model of single input/single output in Figs.1 and 3(a) is also described by the 
multiple inputlsingle output transfer system as shown in Fig. 3(b). 

i=O 

where X,(k), Y,(k), and "(IC) are, respectively, the spec- 
tra of the zero-padded MN-length signals &(.), &(n), and 
&(n) of the original N-length signals x,(n), y m ( n ) ,  and 
n,(n) in the mth block, where each is obtained as 

(7)  
x k ( n )  = { ;T"(n), if n = 0, 1,.  . . , N  - 1; 

if n = N ,  N + 1, . . . , MN - 1. 

From Fig. 3(b), the spectrum Zm-i,m(k) of the response of 
H i ( k )  to zm-i(n) is defined as follows: 

zm --i ,m ( k  ) = Hi ( k ) X m  --i ( k ) .  (8) 

The noise term N m ( k )  in (6) can be rewritten as 
03 

Nm(k)  = Ym(k )  - C ~ i ( k ) x m - i ( k ) .  
i=O 

The expectations of the product of Nm(k)  and its complex 
conjugate NA ( I C )  give the average noise power PN ( k )  at the 
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kth frequency such as Using the relation ( l l ) ,  V ( k )  is 

J=0 
c c m  

+ H Z  ( k)H,* ( k ) E [ X T l L - 2  ( k)xk-j ( k ) ]  
c=O j=o 

where P)v(k) is independent of the block index number 
since the signal a ( n )  is assumed to be stationary. The least 
square estimate of the transfer function is obtained as that 
which minimizes P N ( ~ )  over all possible choice of { H I  ( I C ) } .  
By setting the partial derivatives of Piy(k) with respect to 
{H,*(k)}  equal to zero 

cxi 

E [ X ; , - , ( ~ ) Y m ( k ) ]  = H 1 ( l c ) E [ X , , ~ l ( k ) X ~ , _ , ( k . ) l  (9) 
1=O 

The term in the {.} brackets of this equation is equal to the 
spectrum K ( k ) ,  ( k  = 0,1 , .  . . , MN - l), which is obtained 
by applying the MN-point FFT to the MN-point zero-padded 
signal U:(.) defined by 

Using the spectrum b<(k),  the total spectrum V ( k )  for the 
MN-point signal u ( n )  is described by 

In the relation of (13), by replacing K ( k )  and_V(k), respec- 
tively, by the delayed K c k  transfer function H i ( k )  and the 
total transfer function H b k ( k ) ,  the estimate is given by 

where j = 0 , l . .  ..,ca. Since it is assumed that the input - 11-1 

m', (9) reduces to 1=0 

signals .cm (n )  and xm I ( 7 1 )  are mutually uncorrelated for 712 # Hbl; ( k )  = 1 ( k )  exp ( - j 2 r  2) . 
( k  = 0,1 , .  . . ,MN - 1). 

E [ X A _ ,  (k)Y,(k)] = HJ (k)E[IX,-, ( k )  12]. (14) 

Thus Thus, the estimate z l ; ( k )  of the total transfer function is 
obtained from the M spectrum estimates { a ( k ) }  of the E [Xk - L ( k )Ym 11 Z(k) = (lo) delayed block transfer function in (10). E [  I X T I L -  1 ( k ,  1 2 ]  

where i = 0,1,  . . . , ca. This gives the least square estimate of 
the delayed block transfer function from an input signal x m ( n )  
in a block to the i-block delayed output signal ym+i(n) .  

A method to obtain the estimate of the total transfer system 
from the resultant delayed block transfer functions is described 
below. To begin with, let us consider the relation between the 
spectrum K ( k )  of the ith block signal ui(n), which consists of 
N points in length, and the spectrum V ( k )  of the signal ~ ( n ) ,  
which consists of M blocks (= MN-point length), which are 
described as follows: 

By applying the MN-point FFT to the M-block length 
signal 

Iv .  THEORETICAL DERIVATIONS FOR 
THE TRANSFER FUNCTION ESTIMATES 

To confirm the accuracy improEment in the estimze of 
z k ( k )  in (14), the estimates of H,ll(lC) in (4) and Hb,+(k) 
in (14) and their bias errors are theoretically derived in this 
section. To begin with, the characteristics of the true transfer 
function are defined in Section IV-A. Then, after deriving 
the theoretical expression for the expectations of the cross 
s p e c z m  and p o x r  spectrum in Section IV-B, the estimates 
of Hall(k) and H b k ( k )  are theoretically derived in Sections 
IV-C and D, respectively. 

W ( I I  + N I )  = ~ ~ ( 7 1 ) .  71 = 0. 1. .  . . . N  - 1: A. Dejnirion of the Characteristics of a Transfer Function 
= O 3  '. ' . . - ( l  Let us assume that the transfer system is a rational transfer 

the resultant spectrum V ( k )  is 
function of order P and the impulse response h(n) is described 
by 

A l N - 1  

v(~c)  = o(n) exp(  - , jLT$)  
1=1 

n=O 
A-1 1 N + N - 1  

1=0 n=zN (C , }  are the complex coefficients. By defining 
= u(n)exp(-i2T&) where { p l }  are the poles of the transfer system ( (pzI  < l), and 

P A l N - 1  

v(~c)  = o(n) exp(  - , jLT$)  
1 = 1  

n=O 
A-1 1 N + N - 1  

1=0 n=zN (C , }  are the complex coefficients. By defining 
= u(n)exp(-i2T&) where { p l }  are the poles of the transfer system ( (pzI  < l), and 

1 i=O n = O  ( MN 
k ( n  + N % )  izI-1 A - 1  

= w ( n + N i ) e x p  -jar 
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the MN-point Fourier transform of the impulse response h(n) 
is obtained by 

If the length of the FFT increases to the infinite, that is, 
M -+ 00, the true transfer function H,(k )  of H ( k )  in (17) 
is given by 

1 P 

H, (k )  = ci- 
1 - piz ; .  i=l 

B. Theoretical Derivations for the Cross Spectrum 

Let Fom(lc; q )  denote the kth spectrum of the signal h(n + 
m N  - q )  in the mth block of the response of the transfer 
system to the impulse S(n - q )  at a time q in the 0th block 
as shown in Fig. 4(a). For the case of m 2 1, by applying 
the MN-point FFT to the zero-padded impulse response 
h’(n + m N  - q )  

h’(n + m N  - q )  

h(n + m N  - q ) ,  if n = 0, I , .  . . , N  - 1; 
if n = N , N  + 1,. . . , M N  - 1 = {O!  

and substituting (15) into the resultant spectrum, the spectrum 
Fo,(IC; q )  is given by 

For the case of m = 0, by applying the MN-point FFT to the 
zero-padded ( N  - q)-length impulse response h’(n - q )  

the spectrum Foo(IC;q) is obtained by 

1 - (p&)N--q 

1 - p ; z t  Foo(k 4 )  = cazkq 
P 

! (for m = 0) (20) 
i=l 

where the derivations of these spectrum Fom(lc; q )  and 
Foo(k; q )  in (19) and (20) are described in Appendix A. 

Let zom(n)  (m = 0,1 , .  . .) denote the N-point signal in the 
mth block of the response of the transfer system to the input 
signal ~ ( n )  in the 0th block as shown in Fig. 4(b). Using the 
expression for the Fom(k; q )  of (19) and (20), the MN-point 

’ ZERO-PADDED z’om(n) 
*0PTPPPd 

1 MN-POINT FFT 

(b) 

ZOm(k) 

Fig. 4. (a) Fo, ( k ;  q)denotes the MN-point spectrum of the zero-padded 
signal h‘( R + m N - q )  in the mth block of the response of the transfer system 
to the impulse 6( n - q )  at a time q in the 0th block; (b) 20, ( k )  denotes the 
MiY-point spectrum of the N-point signal rom(n)  in the mth block of the 
response of the transfer system to the input signal SO(R) in the 0th block. 

spectrum Zom(IC) of zOm(n)  is obtained by 
N - 1  

(21) Zom(k) = zo(q)Fom(k q )  
q=o 

where m = 0 , 1 , 2 , .  . .. By substituting (19) and (20) into (21) 

Letting Gom(lc) be the expectations of the cross spectrum be- 
tween X,-,( IC) and 2 0 ,  ( I C )  in (22) and (23), Gom ( I C )  is given by 
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Gom(k) = E[X,* (k)Zom ( IC) ]  of the spectrum X, ( k )  anAK ( k )  of the resultant signals z, (n)  
and y,(n), the estimate H,n(k) in (4) is described as follows: 

~. exp(  -jZr$). (28) 

P 
- (pZz,")" - ( P Z ~ $ ) - ~ ~  m N  

= Ne:@) c, hl-1 
,=l 1 - p , z $  1 - (p,.,",-l p z  * M - r n  G,(IC) 

Hall(k) = M N2a2(IC) 
ni=O 

( m  2 1) 
(24) 

The term Gm(IC)/N2c%(k) is equal to the z ( k )  in (10). 
Thus, using the estimate % ( I C )  of the d2ayed block transfer 
function, the transfer function estimate Hall( k )  is obtained by 

where these derivations of the cross spectrum Go,(lc) and 
Goo(k) in (24) and (25) are described in Appendix B. 

On the other hand, the expectations of the power spectrum 
obtained by the MN-point FFT of the zero-padded input sig- 
nal z (n) ,  which consists originally of N points, is calculated 
by 

E[IX(k)121 

Since E[z;(n)zo(q)] = a%6(n - y), the expectations of the 
power spectrum is 

n=O 

= N2c:(k) .  (26) 

From the ratio of the average cross spectrum GoTn(k) in 
(24) or Goo(k) in (25) to the average power spectrum of z ( n )  
in (26), the estimates g(k) in (10) for the delayed transfer 
function are obtained by 

AAdescribed in Appendix C, by rearranging after substituting 
H , ( k )  in (27), the cross spectra Go,(IC) in (24) and (25), 
and zo in (16) into (29) 

I 1 1 - (pzz,")"N 
i=l  1 - pzz; N M  1 - (pzz,")-l 

P 

= cz- [I+-. 

(30) 

Since the first term Cz* of H,ll(k) is equal to 
the true transfer functiof3_H, ( k )  in ( 18), the reEaining term 
shows the bias error AH,ll(k) in the estimate Hall(k). Thus, 
the bias error A z ~ ( k )  is given by 

P 

A Z I ( k )  
= E&) - H m ( k )  

CL 1 1 - (pzZ ," )* tN 
P 

- - ~, 

1 - p,z," N ( l  - ( p , z , " ) - l }  M '  
7 = 1  

(31) 

D. Transfer Function Estimate zk ( k )  for  the Proposed 
Method 

Let us consider the theoretical derivation for the estimate 
Hbk(k)  of the total transfer system in (14) using the definition 
of the impulse response h(n)  in (15) as follows: 

By substituting H;(IC) of (27) into (14) and using the 
definition of zo in (16), the estimate z k ( k )  is obtained by 

hl-1 

N2.E(k) m=l  

h { G " I ( k )  + Gom(k)$"}. 
H b k ( k )  = ~ C. Transfer Function Estimates zl ( k )  for  the Standard 

Cross Spectrum Method 

As shown previously in (41, % , ( I C )  denotes the estimate 
of the transfer function obtained by applying the MN-point 
FFT to the M-block signals ~ ( n )  a n 2 ( n ) ,  where each block 
consists of N points. The estimate Hall(k) is rewritten by 

By arranging after substituting the cross spectra Goo(k) of 
(24) and Gom(k)  of (25) into this equation as described in 
Appendix D, the estimate z k ( k )  of the total transfer system 
obtained by the proposed method is given by 

As described in Appendix C, the signals ~ ( n )  and y ( n )  (32) 
Let us consider the physical meaning of z k ( k ) .  Let g ( k )  
be the transfer function estimate obtained by applying the 
standard method to the N-point input and output signals. By 

are divided into M-block signals z,(n) and ~ ~ ( 7 1 )  (i = 
0 ,1 ,2 ,  . . . , A4 - l), respectively. Using the power spectrum 
lXi(k)12 and the cross spectrum Gl-,(k) = E[X:(k)Y,(k)] 
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STANDARD 
CROSS BLACKMAN- 
SPECTRUM PROPOSED TURKEY 
MJTHOD MKTHOD METLOD 
H.l,(k)r---HHbL(k)---,HRT(k) 

THE NUMBER ( M )  
--, OF BLOCKS 
1 M M N  

THE LENGTH (N)  
OF EACH BLOCK 

MN N 1 

*LENGTH (MN) OF 
IMPULSE RESPONSE 
IS KEPT CONSTANT. 

(a) 

I I I I 

M N  N 1 
THE LENGTH (N)  OF EACH BLOCK 

(b) 

Fig. 5. (a) Relation among the proposed method, the standard cross spectrum 
m e g d ,  and the BlackmazTukey method; (b) theoretical ratio 9 ( k z :  i ,  N) of 
A H b k ( k )  in (33) to AHall(k) in (31) is always equal to or less than 1 for 
various lengths N of each block. 

substituting N into M N  of the segment length in Kl(IC) of 
(30), the transfer function estimate g ( k )  is given by 

1 1 1 1 - (p&N 
P 

g(k) = i=l 1 - p ; z o  N 1 - (p;z;)-l  . ci 7 [ 1 + - 
The second t e r m k t h e  right-hand side shows the bias error. 
In the estimate Hall( k l o f  (30), which is given when the 
window length N of Ho(k> is increased to M N ,  the bias 
error of g ( k )  is multiplied by &lT$;!;i)N < 1, that is, 
the bias error is decreasedhinverse proportion to the window 
length. I k t h e  estimate H b k ( k )  of (32), however, the bias 
error of Ho(k)  is multiplied by exponentially decaying term 
( p ; ~ t ) ( ~ - ' ) ~  << 1. Thus, a more accurate estimate of the 
transfer function is obtained by the proposed method. 

Ci* 
of gk ( k )  in (32) is equal to the true transfer function H ,  ( I C )  
in 2 8 ) ,  and the r e m a i n i s  term expresses the bias error 
AHbk(IC) in the estimate H b k ( k ) .  Therefore 

k M N  

As the same manner in (31), the first term 

AH$-,@) = Z ( k )  - Hm(IC) 
Ci 1 P 

~. - - 5 1 - piz; N{1 - 

x ( p i z ; ) ( M - l ) N  (1 - ( P i W ) .  (33) 

If the number M of the blocks and the length N of each block 
in (33) are substituted by 1 and M N ,  respectively, as shown in 
the extreme left of Fig. 5(a), the proposed method coincides 
w i L t h e  standard cross spectrum m e t h o d , z d  in this case, 
AHbk(lc) in (33) coincides exactly with AHall(IC) in (31). 

Alternatively, when the number M of the blocks and the 
length N of each block in (33) are substituted by M N  and 1, 
respectively, as shown in the extreme right of Fig. 5(a), each 
block consists of only one point, and the number of the blocks 

becomes equal to the number of total points of the signals. In 
this case, the spectrum Y,(k) of mth block, which consists 
of one-point signal y(m), is given by 

N - 1  
h 

Y,(IC) = y(n + m ) e x p  - j2r -  
n = O  ( t N )  

= Y(m). 

Thus, the delayed block transfer function Hi(lc) in (10) is 
obtained as 

- - E[.(m - ~ > * d m > l  
E[I.(m - 4l21 

h 

= Rxy(i) 

where Rzy(i) denotes the estimates of the normalized correla- 
tion function between z (n)  and y(n + i ) . E o m  (14), the total 
transfer function, which is denoted by H B T ( ~ ) ,  is equal to 
the MN-point Fourier transform of the correlation function 
such as 

M N - 1 -  

= i=O R X y ( i ) e ~ p ( - j 2 r X )  M N  (34) 

which corresponds to the spectrum estimates obtained by the 
Blackman-Tukey(B-T) method [ 191. By substituting M x  and 
1 into M and N of (33), respectively, the bias error A H B T ( ~ )  
in the estimate Hy~(k) is given by 

AH?T(IC) = AH$-,(IC) 
M - M N , N - l  

(35) 

V. ACCURACY COMPARISON BASED ON 
THE THEORETICALLY DERIVED EQUATIONS 

%comparing the d i f f eEce  of the bias error between 
AHall(k) in (31) and AHbk(IC) in (33), it is clear that 
there is difference between them o n e n  the third terms 
(pi .,") ( M  - 1 )  N {lz(piz;)N} in AHbk(k) and &{l - 
  pi^;)^^) in AHall(k). When the actual length of the signal 
involved in the zero-paddeLsigna1 is e q 2 1  to N ,  let us define 
the ratio ~ ( k ; i , N )  of AHbk(IC) to AHalI(k) for each order 
i of the impulse response Cip; of the poles in the transfer 
system as follows: 

def A% ( I C )  
q ( k ; i , N )  = ~ 

A Z i ( k )  
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(a) 
0 15 31 47 63 

TIME(P0INTS) 

20 

0 2 ~ / 7  x 2x 
ANGULAR FREQUENCY 

(RADIAN) 

Fig. 6. (a) Examples of the impulse response h ( n )  in (15) employed in 
Figs. 7 and 8; (b), (c) frequency characteristics H=(I;) of the signal in 
Fig. 6(a) defined by (18). The order P of the rational transfer function is 
equal to 1, C1 = 1.11111 = 0.90, and L p l  = F. The length >llAV is equal 
to 64. 

The first term ~ ~ N ( P l z " ) M N  l - (p , z ; )h fN , which we denote by D ( k : i )  

hereafter, depends not on N but on the total length M N  of the 
impulse response, which is assumed to be a constant value. 

Since the bias error is large especially around the reso- 
nant frequency, let us evaluate ~ ( k ;  i ,  N )  at and near the 
resonant frequency as follows: At the resonant frequency 
IC;  = MNLp; /2x  of the ith pole, the complex term pi.," 
becomes a real value, which we denote by n (0 < U < 1). 
Thus, the ratio ~ ( k ;  i :  N )  and D ( k ;  i) become real at k = k;. 
In this case, the ratio ~ ( k i :  i ,  N )  at k = IC;  is given by 

(37) 

where D ( k ; i )  > 0. Since the partial derivation of a-"' = 
exp( -N In U) with respect to N is equal to - u - ~  I n  a ,  the 
partial derivation of q(k ; ;  i: N )  with respect to N is given by 

Since the second term ( a N  - lna" - 1) is positive for 
0 < uN < 1, the gradient of q ( k Z :  1 .  N )  is positive 
for 0 < aN < 1. Thus, r ) ( k z ;  i ,  N )  increases monotonically 
as N becomes larger in the range of 1 5 N 5 M N  as 
illustrated in Fig. 5(b). When N is e q u L t o  M N ,  that is, 
M = 1. A H d , ( k )  becomes equal to AH,ll(k) as described 
previously. In this case, ~ ( k ;  i, N = M N )  = 1. Therefore, the 
bias error AKk(k)  in the proposed method is always less than 
or equal to A Z l ( k )  in the standard cross spectrum method 
at the resonant frequency, that is 

-2 
K -3 N=64, M = l  
k? -4 

y -3 

N =16,M =4 

-*,, , , 
0 2x17 7r 2 
AN G U LA R F R EQ,U,E,N,F,Y., , 

, R H " I H I Y ,  

Fig. 7. Magnitude characteristics of the bias error in the estimate z k  ( I ; )  by 
the proposed method in (32) for different five combinations of the number 'if 
of theblocks and the l e n g t h z o f  a block. The dotted line shows the bias error 
AHall(k) in the estimate H,l l (k)  of the standard cross spectrum method in 
(30): (a) S = 64. A1 = 1; (b) S = 3 2 .  .lf = 2; (c) X = 16. A4 = 4; (d) 
h' = S , d I  = 8; (e)  A: = ].'if = 64. 

Fig. 6 shows an example of the impulse response h(n) in 
(15) and its frequency characteristics H,(k) in (18) for the 
case where the order P of the rational transfer function is 
equal to 1,  C1 = 1, lpll = 0.90, and Lpl = q. The length 
M N  is equal to 64. 

Figs. 7 and 8 show, respectively, E m a g n i t u d e  and phase 
characteristics of the bias error A H b k ( k )  of the proposed 
method in ( 3 3 )  for five different combinations of M and N 
under the condition that the total length M N  isAways equal 
to 64. The dotted line shows the bias error AH,il(k) of the 
standard cross spectrum method in (31). The bias error in 
H,ll(k) is large especially at and near the resonant frequency 
k l  = x M N .  

In Figs. 7(a) and 8(a), the bias error of x k ( k )  coincides 
with that of z l ( k )  because the number M of the block is 
equal to 1 in these figures. As the number M of the blocks is 
increased from top to bottom in Figs. 7 and 8, the estimation 
accuracy is remarkably improved. 

Figs. 9 and 10 show the characteristics of the bias error 
A z k ( k ; )  as a function of the value of M ,  where the total 
length M N  is 64 and i p l  = F. The magnitude in Fig. 9 
and the phase in Fig. 10 of the bias error are represented by 
the values at the discrete frequency kl = x M N  ~9 
and k1 = 10, respectively. The dotted line shows the bias 
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Fig. 8. Phase characteristics of the bias error in the estimate Kk ( k )  by the 
proposed method in (32) for different five combinations of the number Af of 
thexocks and the length Azf a block. The dotted line shows the bias error 
AHall (k) in the estimate Hall (k) of the standard cross spectrum method in 
(30): (a) = 64.h1 = 1; (b) N = 3 2 . M  = 2;  (c) N = 16.,!21 = 4; (d) 
9 = 8. AT = 8; (e) AY = 1, 1\21 = 64. 

error in the estimate %](IC) of the standard cross spectrum 
method. For three different values of the magnitude of p l  
(Ipl I = 0.95, Ipl I = 0.9, and Ipl I = 0.5), the results are shown 
in Figs. 9(a) and 10(a), Figs. 9(b) and 10(b), and Figs. 9(c) and 
10(c), respectively. It is obvious that the bias error decreases 
as the number M of the blocks becomes large. For the case of 
M 2 2, the bias error of the proposed method is significantly 
less than that of the s s d a r d  cross spectrum method, and the 
resultant bias error AHbk(k)  of the proposed method is small 
enough for the accurate estimation of the transfer function. 

VI. COMPUTER SIMULATION EXPERIMENTS 

In order to illustrate the advantage of the proposed method 
to estimate the transfer function H ( k )  or its impulse response 
h(n),  we choose the example of the fourth order all-pole 
transfer model H m ( k ) ,  where poles are 0.996exp(f27r . 
65/360) and 0.997exp(f27r .80/360) as shown in Fig. 1 l(1- 
b). The input signal ~ ( n )  in (1) is assumed to be white noise, 
and the output signal y(n) is contaminated by measured white 
noise n(n) ,  which is uncorrelated with the driving series ~ ( n ) .  
The SNR equals 15 dB, and 32 768 points are generated for 
each of the signals ~ ( n )  and y(n). The generated two signals 
~ ( n )  and y(n) are then divided into 128 sections, each of 
which has length ( M N )  equal to 256 points. The true impulse 

t; -4 / i 
G. - 2 /  
w -4, , , , , , , l ( b )  
0 -  

-2 
- 3  
-4 

1 2 4 8 16 32 64 
THE NUMBER ( M )  OF BLOCKS 

Fig. 9. Relation between the number hf ofblocks used in the proposed 
method and the magnitude of the bias error A H b k ( k )  in (33) at the resonant 
frequency k l  = 9 x M N  N 9 under the condition that the total length 
MB is always equal to 64. Lpl  = F. The dotted line shows the bias error in 
the estimate H T l ( k )  of the standard cross spectrum method: (a) Ipl I = 0.95; 
(b) 1pi I = 0.9; (c) Ipi I = 0.8. 

~116- 

SPECTRUM METHOD i CR.0S.S .... 

K Ot-1 

h K op-----/ 

i w 

n 

( P I I = O . ~  (C)  -71.132, i I I I , 
1 2 4 8 16 32 64 

THE NUMBER ( M )  OF BLOCKS 

Fig. IO. Relation between the number A42f blocks used in the proposed 
method and the phase of the bias error A H b k ( k )  in (33) near the resonant 
frequency El = 10 under the condition that the total signal length A4'V is 
always equal to 64. Lp1 = %. The dotted line shows the bias error in the 
estimate H ? l ( k )  of the standard cross spectrum method: (a) lpl l  = 0.95; 
(b) Ipl(  = 0.9; (c) lpil = 0.8. 

response h,(n) of H , ( k )  is shown for the same length in 
Fig. ll(1-a). Assuming that the true length of the impulse 
response is not known a a priori, the impulse response is 
estimated for the length M N  = 256 points in the following 
experiments for both the standard method and for the proposed 
method. 
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TIME n (POINTS) 

Fig. I I .  ( 1 )  Magnitude characteristics of the fourth-order all-pole transfer 
model H,(k) employed in the computer simulation in Section VI and 
its impulse response h ,  ( n ) ;  (2) transfer function estimate H,ll(k) and 
its impulse response h , l l ( k )  obtained by the standard method described in 
Section 11. 

I 

Fig. 1 l(2) shows the transfer function estimates z l ( k )  and 
the impulse response estimate h a l l ( n ) ,  which are obtained by 
applying the standard method in Section I1 to the signals x;(,n) 
and y(n,) in each segment with length MN = 256, which 
is divided above. The number of the nonoverlapping average 
operation E[.] in (4) is equal to 128 times. As described 
previously in Section 11, the estimate Hall(k) is obtained so 
that the impulse response to every input impulse in a segment 
is truncated at the end of the s e E e n t .  In the magnitude 
of the transfer function estimate Hall(k) in Fig. 11(2-b), a 
spectrum zero appears due& the truncation. The resultant 
impulse response estimate h,l~(n) in Fig. 1 1(2-a) converges 
more rapidly than the true characteristic h,(n) in Fig. 11( 1- 
a). From these results, the true length of the impulse response 
h,(n) cannot be estimated by the standard method. 

Figs. 12 and 14 show the results obtained by the method 
proposed in Section 111. For the results in Figs. 12 and 14(1), 
each segment with length M N  = 128 is divided into nonover- 
lapping 8 blocks, each of which has 32 points in length, 
that is, in (7), (lo), and (14), the number A4 of the blocks 
and the length N of each block are 8 and 32, respectively. 
Fig 12 shows the impulse response estimates h,i(n).  (i = 
0 ,1 ,2 : .  . . , 8) ,  whickare obtained from the discrete Fourier 
transform (DFT) of Hi(k).exp( -j27r.ki/M) in the right-hand 
side of (14). The impulse response &(n)  shows the transfer 
characteristics from the zero-padded input signal &(n) in the 
mth block with length N to the zero-padded i-block delayed 
output signal yL+;(n). For the estimate ho(71) in Fig. 12(a), 

h 

A 

Fig. 12. Impulse response estimates h , ( n ) ,  ( 1  = 0. 1 . .  . . ~ 8), which are 
obtained by applying DFT to the block transfer function estimates g(k) 
multiplied by shift coefficients exp(-j2x . kz / .W) .  In the proposed method 
in Section 111, each segment with length -IfAV = 126 is divided into 
nonoverlapping 8 blocks, where each has 32 points in length (*U = 6. 
'V = 3 2 ) .  

the lengths ! of the shortest and longest paths from the input 
block to the output block are 0 and-N - 1, respectively, as 
shown in Fig. 13(a). However, for h l (n )  in Fig. 12(b), the 
lengths ! of the shortest and longest paths are 1 and 2 N  - 1, 
respectively, as shown in Fig. 13(b). Thus, the duration-time 
of the resultant impulse response estimate is 2 N  - 1 for hl(n) ,  
h ~ ( n ) ,  . . . , h8(n.) as shown in Figs. 12(b)-(i). For the estimates 
hs(7t) in Fig. 12(i), the later half of the estimates is shifted to 
the beginning of th5estimates due to the aliasing in the above 
DFT operation of H , ( k )  . e x p ( - j 2 ~  . Ici/M). 

Thus, by eliminating the beginning part of the estimate 
hs(n)  and summing up the resultant estimates K ( k )  . 
exp(- j2r  . k i / M )  for i = 0, 1? . . . , 8  in (14), the transfer 
function estimates zk(k), and its impulse response h b k ( n )  

is obtained as shown in Figs. 142-b) and (1-c), respectively. 
The impulse response estimates hbk(n . )  in Fig. 14(1-a) almost 

h h 
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MN is divided into MN blocks, where each has one point in 
length. These results almost coincide with those in Fig. 14(1). 

VII. CONCLUDING REMARKS 

+ho(n) 

A 

+I ( 7 1 )  

(c) 

Fig. 13. Illustrations for explaining the relations between the length E of the 
estimated impulse response in Fig. I2 for each block transfer function and the 
amount of time for which the output block is delayed from the input block. 

TIME 17 (POINTS) 

*I2 
FREQUENCY k 

(RADIAN) 

Fig. 14. (1)  Transfer function estimate Hyk(/i) and its impulse response 
bG(I; )  obtained by the proposed method described in Section 111 (,!f = 8 ,  

= 32); (2) transfer function estimate HBT(I ; )  and its impulse re- 
sponse byT  ( I ; )  obtained by the proposed method described in Section IV-D 
(-21 = 128. AV = 1). 

coincide with the true characteristics H,(k) in Fig. 1 I(1-a) 
except for the amplitude Gk(0) for the first point, which 
is affected by the contaminated noise components. F x  the 
same reason, the magnitude of the transfer function Hbk(k)  
in Fig. 14(1-b) has bias error, especially for the base part of 
its resonant characteristics. These errors will decrease with 
an increase in the average number. From these figures, the 
estimates obtained by the standard method are improved by 
the proposed method. 

Fig. 14(2) shows the estimates H y ~ ( ( k )  in (34) and its 
impulse response g k ( n ) ,  where each segment with length 

This paper proposes a new method that accurately estimates 
the transfer function of a transfer system with a long impulse 
response. To begin with, a delayed block transfer function 
was introduced to detect components that are correlated to the 
signal in the input window but leaks from the output window. 
The delayed block transfer function is defined as the transfer 
function that is calculated by use of the input signal and the 
output signal in the a delayed output window. Next, from the 
resultant delayed block transfer functions, the total transfer 
function is estimated, and the estimation accuracy is improved 
by the proposed method. 

We have also described the derivation of the thorough 
theoretical expressions for the estimates of the transfer func- 
tions obtained by the proposed and standard methods. By 
comparing these expressions, the accuracy and the usefulness 
of the proposed method was confirmed. From the computer 
simulation experiments, the advantage of the proposed method 
was also confirmed. 

Two issues remain for further research as follows: In the the- 
oretical derivations and the simulation experiments, the block 
transfer functions are computed over contiguous nonoverlup- 
ping blocks of the input and output signals, where each block 
is cut off from the signals by using a a rectangular window. As 
described in Section I, however, considerable work has been 
done by Carter and Nuttall [37], [41] in applying Welch's 
approach [5] to the estimation of the spectra and cross spectra 
when the data blocks are overlapping. Moreover, it is also 
necessary to determine the optimum window applied to each 
block when it is cut off from the original signal. These 
important issues are currently under investigation. It is also 
important to apply the proposed method to some practical 
examples. 

APPENDIX A 

Derivations for the Spectrum Fo,(k; q )  in Section IV-B 

The kth spectrum Fom(k; (I) of the signal h(n + mN - q )  
in the mth block of the response of the transfer system to 
the impulse S(n - q )  at a time q in the 0th block as shown 
in Fig. 4(a) is obtained as follows: For the case of m 2 1, 
by applying the MN-point FFT to the zero-padded impulse 
response h'(n + mN - q )  defined by 

h'(n + mN - q )  

h(n + mN - q ) ,  if n = 0,1, . . . , N - 1; 
if n = N ,  N + 1,. . . , MN - 1 = (0, 

the spectrum Fom(k; q )  is given by 
N - l  

Fom(k;  q )  = h(n + m N  - q ) z t n ,  (for m 2 I) (A.1) 

where zo = e x p ( - j 2 ~ / M N )  as defined in (16). For the case 
of m = 0, by applying the MN-point FFT to the zero-padded 

n = O  
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( N  - y)-length impulse response h'(n - y) where 

h(7~  - y), if n = y , q  + 1,. . . , N  - 1; 
otherwise h'(n - 4 )  = 

1, i f n = 0 ;  
0, otherwise. l j (7L)  = 

Letting each spectrum component of X ( k )  have the power 
the spectrum F ~ o ( k ;  y) is obtained by 

0 2  

N - l  N .;(IC) = -2 (B.2) 

Foo(k; q )  = h(n - y)$. (A.2) at the kth frequency 
n=q 

P N - 1  

- (Piz$)" Na&(k)  z,knnp;n 
n = O  1 - p i x ;  By substituting h(n) defined in (15) into (A.l) and (A.2), the Gom(k.1 = XciP, 

spectra Fom(k; y) and F~o(k; q )  are, respectively, described by i=l 

N-1 P 

n = O  i=l 
P N-1 

i=l n = O  

03.3) 

For the case of rn = 0, using (23), the cross spectrum Goo(k) 
is given by 

Goo(k) 
= E[X;(k)Zoo(k)l 

i=l n = O  
P 1 - (p&)N-q 

1 - paz; 
. (A.4) 

2=1 

Equations (A.3) and (A.4) are used in (19) and (20), respec- 
tively, in the text. 

APPENDIX B 

Derivations for  the Cross SpectrumGO,( k )  in Section IV-B 

The expectations Go, ( k )  of the cross spectrum between the 
spectrum X o ( k )  of the input signal in the 0th block and the 
spectrum Zo,(k) of the N-point signal in the mth block of 
the response of the transfer system to the ~ ( n )  in (22) and 
(23) is given by 

Go,(k) 
= E[X;(k)Zom(k)l 

Equations (B.3) and (B.4) are used in (24) and (25), respec- 
tively, in the text. 

APPENDIX C 

Derivations for the Transfer Function Estimates zl ( k )  for 
the Standard Cross Spectrum Method in Section IV-C 

As shown in (4), % , ( I C )  denotes the estimate of the transfer 
function obtained by applying the MN-point FFT to the M -  
block signals ~ ( T L )  and y ( ~ & ) ,  where each block consists of N 
points. The estimate z l ( k )  is rewritten by 

M - 1  

(B.1) X ( k )  = Xi(k)exp(- j2a!3  
for the case of m 2 1. Since the variance of the input signal 
x(n) is assumed to be 02 as described in Section 11, 

E[z.(n)xo(Y)l = d 6 ( n  - 4 )  

i=O 
M-1 

Y ( k )  = x(k)enp(-j2n;) (C.1) 
i=O 
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and Xi(IC) and Y , ( k )  are spectra obtained by applying the 
MN-point FFT to the zero-padded MN-point signals xi(.) 
and y,! (n),  respectively, as defined in (12). Since the signals 

The term G m ( k ) / N 2 a ~ ( k )  is equal to the z ( k )  in (10). 
Thus, using the estimate g(k) of the dzayed block transfer 
function, the transfer function estimate H,ll(k) is obtained by 

{xi(.)} are mutually uncorrelated, the denominator of (4) is M-1 
calculated from (C.l) such as M - m -  H m ( k )  exp( - j27r$) .  (C.8) 

By rearranging after substituting H m ( k )  in (27) and zo in 

m=O 
A 

M-1 

N2a2 ( I C )  m = l  

M - m  1 " Go, ( 
h 

Hall(k) = ~ 

M-1 
E[IX(k)121 

= E [{ Xf(IC)ejZ.rrki/M 

M-l 
= E [ I X i ( W I  

i=O 

= MN2a2(IC) 

where the definition of E[1X(lc)12] is different from that of 
E[lX(k)12] in (26). 

(1 - r N ) ( l  - T - " )  
M-l 

+ l . -T-l  --rm"] M (c.9) 

where the cross spectra Gom(k) in (24) and Goo(k) in (25) are 
used, and T is defined by p&. Using the relation E,"=, nxn = 

of (C.9) z ( l - z K )  K Z K + '  

is rearranged as follows: 

M - rn 

m = l  On the other hand, the numerator of (4) is written by 

E [ X *  (IC)Y(k)I 
l-Z , the last term E,"; VT" 

i=O 

Using the causality of the transfer system 

E [ X f ( k ) K ( k ) ]  = 0 f o r i  > 1. (C.4) 

Since the input and output signals are assumed to be stationary, 
the cross spectrum Gl-i(k) = E[X,*(IC)K(k)] between X i ( k )  
and % ( I C )  in the right-hand side of (C.3) is given by 

Gi-i ( I C )  = E[X,* (k)K ( I C ) ]  
= E[X,* (IC)K-i( I C ) ] .  for 1 2 i. (C.5) 

M-1 

T" 

m=l 

{ ( M  - 1) - MTN + T M N } .  (C.10) 
T N  

M(1-T ) 
- - Thus, the numerator of (4) is obtained by 

Using this result, the term in the square brackets [.] in (C.9) 
is rewritten as follows: 

M-1 M-1 

E [ X * ( I C ) Y ( I C ) I  = ~ ~ - ; ( k ) e x p  
i=o l = i  

M-1 M-1- i  

= Gm(IC)exp( - j27r2 )  
i=o m=O 

M (  1 - T " ) 2  i 1 
M(1 - r-l)(l-  T N )  

[ . ]  = N +  

By substituting (C.2) and (C.3) into (4) 

M-1 M - m  G m ( k )  exp ( q 2 4 - 3 .  (C.7) 

m=O 

Since the term in the braces {.} of (C. 11) is equal to (1 - 
r N ) ( l  - rNM), the term [.] in (C.9) or (C.11) is rearranged as 

(1 - T N M )  

M(1 - r - 1 )  
[.] = N + (C.12) 
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Thus, the theoretical expression of H,ll(k) is summarized as 
follows: 

h f - 1  

m=O 
P 

. (C.13) 1 1 I 1 - (p,z(y’” = c, 7 [ 1 + - . 
a=1 1 - z ) , z ~  NM I - (p,z$)-’ 

This expression is used in (30) of the text. 

APPENDIX D 

Derivations of the Transfer Function Estimatezk ( k )  
for  the Proposed Method in Section IV-D 

In this Appendix, the theoretical derivation for the estimate 
z k ( k )  of the total transfer system in (14) is derived using the 
definition of the impulse responsLin (15) as follows: 

By substituting the estimates H ; ( k )  of (27) into (14) and 
using the definition of zo in (16), the estimate z k ( k )  is 
obtained by 

Substituting the cross spectra Goo(k) of (24) and Go,(k) of 
(25) into this equation 

Since the last term ~ ~ ~ ~ ( ~ i z $ ) ~ ~  in the last equation is 
equal to 

the term in the square brackets [.] of (D.2) is rearranged as 
follows: 

[ ‘ 1  = N(l  - (p , z ,“ ) - l }  + 1 - (pz.,”)” 

+ (1 - ( p ~ z : ) y } ( p ~ z , “ ) N ( l  - ( p & ) ( M - l ) N  1 
= N {  1 - (p,.,”)-’} + ( p , z $ ) ( ” - l ) N  (1 - (Paz0”)”I. 

(D.4) 

Thus, the estimate z k ( k )  of the total transfer system obtained 
by the proposed method is given by 

This expression is used in (32) of the text. 
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