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Abstract—Artery-wall motion due to the pulsation of the 
heart is often measured to evaluate mechanical properties of 
the arterial wall. Such motion is thought to occur only in the 
arterial radial direction because the main source of the motion 
is an increase of blood pressure. However, it has recently been 
reported that the artery also moves in the longitudinal direc-
tion. Therefore, a 2-D motion estimator is required even when 
the artery is scanned in the longitudinal direction because the 
arterial wall moves both in the radial (axial) and longitudi-
nal (lateral) directions. Methods based on 2-D correlation of 
RF echoes are often used to estimate the lateral displacement 
together with axial displacement. However, these methods re-
quire much interpolation of the RF echo or correlation func-
tion to achieve a sufficient resolution in the estimation of dis-
placement. To overcome this problem, Jensen et al. modulated 
the ultrasonic field in the lateral direction at a designed spatial 
frequency to use the lateral phase for the estimation of lateral 
motion. This method, namely, the lateral modulation method, 
generates complex signals whose phases change depending on 
the lateral motion. Therefore, the lateral displacement can be 
estimated with a good resolution without interpolation, al-
though special beamformers are required. The present paper 
describes a method that can be applied to ultrasonic echoes 
obtained by a conventional beamformer to estimate lateral dis-
placements using the phases of lateral fluctuations of ultrasonic 
echoes. In the proposed method, complex signals were gener-
ated by the Hilbert transform, and the phase shift was esti-
mated by correlation-based estimators. The proposed method 
was validated using a cylindrical phantom mimicking an artery. 
The error in the lateral displacement estimated by the pro-
posed method was 13.5% of the true displacement of 0.5 mm 
with a kernel size used for calculating the correlation function 
of 0.6 mm in the lateral direction, which was slightly smaller 
than the width at −20 dB of the maximum lateral ultrasonic 
field (about 0.8 mm).

I. Introduction

methods for estimating the artery-wall motion due 
to the pulsation of the heart have been developed to 

detect atherosclerotic changes of the artery-wall mechani-
cal properties because they are well known to be altered 
by atherosclerosis [1], [2]. In these methods, the radial 
motion of the arterial wall, such as changes in diameter 
[3]–[6] and radial strain [7]–[9], are measured because it 
is considered that the source of the artery-wall motion is 
the change in internal pressure (blood pressure) and that 
there is no longitudinal motion. However, cinthio et al. 
showed that the artery also moves in the longitudinal di-

rection [10]. Therefore, a 2-d motion estimator is required 
to estimate both the axial (radial) and lateral (longitudi-
nal) displacements, even when an artery is scanned in the 
longitudinal direction.

de Korte et al. introduced a motion estimator based on 
the correlation between rF echoes to measure the 2-d dis-
placement of the arterial wall in the cross-sectional scan 
[11]. such a motion estimator based on correlation be-
tween rF echoes had previously been developed and thor-
oughly investigated in the field of tissue elasticity imaging 
[12]–[15], results indicating that it accurately estimates 
the 2-d displacement. However, much interpolation is re-
quired to realize an accurate estimation.

Jensen et al. introduced a method, namely, the lateral 
modulation method, in which the ultrasonic field is modu-
lated in the lateral direction at a designed spatial fre-
quency to realize a lateral displacement estimation using 
the lateral phase induced by the modulated field [16]. This 
method generates complex signals whose phases change 
depending on the lateral displacement and, therefore, the 
lateral displacement can be estimated with a good resolu-
tion because the phase change can be directly converted 
into the lateral displacement. However, this method re-
quires special beamformers that are not available in con-
ventional equipment.

To overcome this problem, chen et al. recently pro-
posed a method to estimate lateral displacements using 
the lateral phases of ultrasonic echoes obtained by conven-
tional beamformers [17]. The accurate estimation of lat-
eral displacements would be very useful, particularly when 
it could be done based on conventional beamformers. The 
present paper describes a method, which also uses the 
lateral phases of echoes obtained by conventional beam-
formers, for estimation of lateral displacements of arterial 
walls. In the proposed method, complex signals are gener-
ated by the Hilbert transform, and the phase shift due 
to the lateral motion is estimated by a correlation-based 
estimator. The proposed method was validated using a 
cylindrical phantom mimicking an artery and compared 
with the lateral modulation method.

II. materials and methods

A. Difficulties Encountered in Estimation of Lateral 
Motion Using Phases of Ultrasonic Echoes

This section describes the fundamental theory of ul-
trasonic fields to show why it is difficult to use the phase 
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information of ultrasonic echoes for estimation of lateral 
motion.

When the ultrasonic field is focused at a depth of inter-
est z using a linear array probe, a point spread function 
(PsF) h(x) is created as illustrated in Fig. 1, where only 
its profile in the lateral direction x at depth z is considered. 
by defining the spatial distribution of the amplitude re-
flection coefficient of an object in the nth frame as r(x; n), 
the amplitude s(x; n) of an echo at depth z obtained by an 
ultrasonic beam focused at the point of interest (x, z) is 
expressed as follows:
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where * denotes convolution.
let ux(n) be the lateral displacement of the object be-

tween the nth and (n + 1)th frames. reflection coeffi-
cient r(x; n + 1) in the (n + 1)th frame is expressed by 
r(x; n + 1) = r(x − ux(n); n), where it can be assumed that 
there is only the lateral motion when the axial motion is 
compensated by an axial motion estimator (in this study, 
the method proposed in [18] was used). In addition, it 
was assumed that there is no distortion in r(x; n) between 
the nth and (n + 1)th frames. Under such conditions, the 
amplitude s(x; n + 1) is given by
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In the lateral modulation method proposed by Jensen 
et al. [16], 2 point spread functions, hr(x) and hi(x), which 

oscillate at the same spatial frequency, fx0, but with a 
phase difference of 90 degrees, are produced to create a 
complex signal g(x; n), whose phase changes depending on 
the lateral displacement of the object. based on the rela-
tionship in (1), g(x; n) can be considered to be the complex 
version of s(x; n). In this case, the 2 point spread functions 
hr(x) and hi(x) are approximately expressed by cos(2πfx0x) 
and −sin(2πfx0x), respectively. Therefore, complex signal 
g(x; n) can be obtained based on (1) as follows:
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as can be seen in (3), the complex signal g(x; n) obtained 
by the lateral modulation method is the Fourier coefficient 
R(fx0; n) of reflection coefficient r(x; n) at spatial frequency 
fx0. Therefore, g(x; n + 1) in the (n + 1)th frame can be 
expressed by g x n g x n e f u nx x( ; 1) = ( ; ) 2 ( )0+ × - p . Under such 
condition, the lateral displacement ux(n) can be estimated 
by the phase shift −2πfx0ux(n) from g(x; n) to g(x; n + 1) 
using the conventional correlation technique because the 
spatial modulation frequency fx0 can be appropriately ob-
tained by designing the point spread functions hr(x) and 
hi(x).

In the present study, the Hilbert transform was applied 
to rF echoes obtained by conventional beamforming to 
use the lateral phase. complex spectrum S(fx; n) of s(x; n) 
of (1) is expressed by H(fx; n) and R(fx; n) of the point 
spread function h(x) and reflection coefficient r(x; n) at 
spatial frequency fx as S(fx; n) = H(fx) · R(fx; n). complex 
spectra H(fx)  and R(fx; n) are described as follows:
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analytic signal y(x; n) of s(x; n) is obtained by the in-
verse Fourier transform of S(fx; n) in the range of positive 
spatial frequencies as follows; see appendix for derivation 
of (6):
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Fig. 1. Geometry for measurement.
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In the integration of (6), in a strict sense, the direct cur-
rent component (at fx = 0) should be multiplied by 0.5. 
However, in this study, the direct current component in 
the measured signal s(x; n) was removed before applying 
the Fourier transform to s(x; n). In this case, the Hilbert 
transform can be expressed by (6).

similarly, the analytic signal y(x; n + 1) of s(x; n + 1) in 
the (n + 1)th frame is expressed as follows; see appendix 
for derivation of (11):
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In actual measurements, s(x; n) is sampled at the in-
terval of scan lines Δx, and the sampled version of s(x; n) 
is denoted by s(mΔx; n) ≡ s(m; n) (m = −M/2, −M/2 + 
1, …, −2, −1, 0, 1, 2, …, M/2), where M + 1 is the num-
ber of scan lines (lateral length of the scanned region 
L = M · Δx). In such a discrete system, (6) and (11) are 
denoted in the digital system as follows:

 y m n h m r m n( ; ) = ( ) * ( ; ),¢ ¢  (12)

 
y m n h m r m n

e

e

j M m u n xM x

( ; 1) = ( ) * ( ; )

*
1

1

2 2 1 ( )

+ ¢ ¢

-

-

+ -

 
/ /( )( )( ( / ))p D

jj m u n xM x( )( ( / ))2 ( )
,

p/ - D

 (13)

where (12) and (13) are obtained from (6) and (11), re-
spectively, by replacing the integration, spatial frequency 
fx, and lateral spatial position x by the summation, k/
(MΔx) (discrete spatial frequency), and mΔx (discrete 
spatial position), respectively. as shown in (12) and (13), 
the phase shift from y(m; n) to y(m; n + 1) actually de-
pends on the lateral displacement ux(n) of the object be-
tween the nth and (n + 1)th frames. The phase shift of 
complex signal g(x; n) of (3) obtained by the lateral modu-
lation method is simply related to lateral displacement 
ux(n) such as g x n g x n g x n e j f u nx x* 2 2 ( )( ; ) ( ; 1) = ( ; ) 0× + × p , 
where * denotes complex conjugate. However, it is difficult 
to relate the phase shift from y(m; n) to y(m; n + 1) to the 
lateral displacement ux(n) because h(x) cannot be assumed 
to be a sinusoidal wave fluctuating at a known spatial 
frequency of fx0 when a conventional beamformer is used. 
This is a major difficulty for utilization of the lateral phase 
with conventional beamformers. In the present study, a 
new method was introduced to overcome this problem.

B. Principle of Lateral Displacement Estimation Using 
the Lateral Phase

let us define the complex correlation function 
γ(Δm; m; n) between y(m; n) of (12) and y(m; n + 1) of 
(13) at lateral lag Δm · Δx as
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where Mc determines the number of sampled points used 
for calculating the correlation function.

The phase shift Δθ(m; n) from y(m; n) to y(m; n + 1) 
induced by lateral displacement ux(n) between the nth 
and (n + 1)th frames can be obtained by setting lateral 
lag Δm at 0 (conventional correlation technique [19]) as 
follows:
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In this study, as illustrated in Fig. 2, it was assumed 
that there is a linear relationship between the lateral 
displacement ux(n) and the change in the lateral phase 
Δθ(m; n), as expressed by
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where a(n) is a constant (corresponding to the slope of the 
linear relationship), which linearly relates the phase shift 
to the lateral displacement.

When Δm is set at 1, it can be considered that 
y(m; n + 1) of (13) is artificially displaced by Δx (= an in-
terval of scan lines) relative to y(m; n) of (12). Therefore, 
the following relationship holds:

 u n x a n m nx( ) = ( ) (1; ; ).+ × ÐD g  (17)

by solving simultaneous equations consisting of (16) 
and (17), slope a(n) and lateral displacement ux(n) are 
estimated as follows:
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where â nm m( , )1 2 ( )D D  and û nx m m,( , )1 2 ( )D D  are the slope and 
the lateral displacement, respectively, which are estimated 

2452 IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 56, no. 11, novEmbEr 2009



by correlation functions at lateral lags from Δm1 to 
Δm2.

although more computation is required, other corre-
lation functions at different lateral lags can be used for 
displacement estimation. as in (17), the following rela-
tionship holds:

 u n m x a n m m nx( ) = ( ) ( ; ; ),+ ÐD D Dg  (20)

where it should be noted that ΔmΔx is an artificial dis-
placement.

Using more than 2 correlation functions, lateral dis-
placement ux(n) of a target can be estimated by the least-
squares method. To do that, let us consider the relation-
ship that is obtained by subtracting (16) from (20) as 
follows:
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where  Ð ¢ Ð - Ðg g g( ; ; ) = ( ; ; ) (0; ; )D Dm m n m m n m n .
by considering the left and right sides of (21) to be 

the actual and model lateral displacements, respectively, 

the mean squared difference α(n) between the actual and 
model displacements is expressed as follows:
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To determine ˆ ,a nm m( , )1 2 ( )D D  which minimizes the mean 
squared difference α(n), the partial derivative of (22) with 
respect to a(n) is set to be zero:
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by solving (23), â nm m( , )1 2 ( )D D  is obtained as follows:
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by substituting (24) into (16), lateral displacement ux(n) 
is estimated as follows:
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In a subsequent section describing experiments using a 
phantom, accuracies in estimation of lateral displacements 
achieved by the 2 estimators, i. e., the computationally 
efficient version given by (19) and the estimator given by 
(25) consisting of 3 correlation functions at lags {Δm} of 
−1, 0, and 1 (Δm1 = −1, Δm2 = 1), are compared.

C. Experimental System

In this study, a cylindrical phantom (inner diameter: 
8 mm; external diameter: 10 mm) made from silicone rub-
ber (elastic modulus: 750 kPa) containing 5% carbon pow-
der (by weight) was measured in the experimental system 
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Fig. 2. assumed relationship between phase shift and lateral displace-
ment. complex correlation function γ(Δm; m; n) is shown by γ(Δm).



illustrated in Fig. 3. The radial motion ( = axial motion) of 
the phantom was induced by changing the internal pressure 
using a flow pump (pulse pressure: about 60 mmHg, theo-
retical resulting radial strain: about 4%). The longitudinal 
motion ( = lateral motion) was simulated by moving a ultra-
sonic probe using an automatic stage. The maximum lateral 
displacements were controlled to be 0.1, 0.25, and 0.5 mm 
by the automatic stage. The stage was triggered by a signal 
from the flow pump, which shows the beginning of ejection.

In ultrasonic measurements for the method proposed 
in this study, rF echoes from the phantom were acquired 
at a frame rate of 286 Hz with a 10-mHz linear array 
probe (UsT-5545, aloka, Tokyo, Japan) equipped with 
conventional ultrasonic diagnostic equipment (ssd-6500, 
aloka, Tokyo, Japan). The phantom was scanned in the 
longitudinal direction at intervals Δx of 0.15 mm (46 scan 
lines), and rF echoes were sampled at 40 mHz at a 16-bit 
resolution.

For the lateral modulation method, a scanner (its front 
end is same as that of α-10 [aloka, Tokyo, Japan]), which 
was modified so that rF echoes received by each array 
element could be acquired (frame rate: 289 Hz), was em-
ployed together with a 10-mHz linear array probe (UsT-
5545, aloka, Tokyo, Japan) [20]. With this system, plane 
waves were transmitted and the receive beamforming was 
performed with the apodization and delay factors shown 
in Fig. 4 [16]. Figs. 5(a) and 5(b) show a beamformed 
rF echo from a fine wire (diameter: 16 µm) placed about 
20 mm away from the ultrasonic probe, and Fig. 5(c) 
shows the spectrum of the echo signal shown in Fig. 5(a) 
obtained by the 2-d Fourier transform. There were 72 
scan lines at lateral intervals Δx of 0.2 mm, and the lat-
eral modulation frequency fx0 was set at 0.89 mm−1.

III. results of Experiments Using a Phantom

A. Estimation of Lateral Displacements by the  
Proposed Method

Fig. 6 shows the procedure to obtain analytic signals 
{y(m; n)}. Fig. 6(a) shows rF echoes from the phantom 
that was scanned in the longitudinal direction using the 

linear array probe with a conventional beamformer. Enve-
lopes {s′(m; n)} of the rF echoes were detected as shown 
in Fig. 6(c). The direct current component contained in 
the envelope signal s′(m; n) has no phase information and, 
therefore, it was removed. In this study, the envelope 
signal without bias was used as echo amplitude s(m; n), 
which is given by

 s m n s m n s m nm( ; ) = ( ; ) ( ; ) ,¢ - ¢[ ]E  (26)

where E[·] denotes the averaging operation with respect 
to lateral position m · Δx. The Hilbert transform with 
a Tukey window shown in Fig. 6(b) was then applied to 
s(m; n) to obtain the analytic signal y(m; n). The real and 
imaginary parts of analytic signal y(m; n) were obtained as 
shown in Figs. 6(e) and 6(f).

The method proposed in section II-b was applied to 
analytic signal y(m; n) to estimate lateral displacement 
ux(n). Twenty points of interest were assigned in the pos-
terior wall at axial intervals of 50 µm along each scan line, 
and lateral displacements {ux(n)} of these points were es-
timated. In Figs. 7(1) and 7(2), plots and vertical bars 
show means and standard deviations of the maximum lat-
eral displacements { ( )}(01),û nx max  and { ( )}( 11),û nx - max  along 
each scan line estimated by the estimators given by (19) 
and (25), respectively, with 4 different sizes of kernels used 

2454 IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 56, no. 11, novEmbEr 2009

Fig. 3. schematic of measurement system.

Fig. 4. (a) amplitude apodization and (b) time delay (for in-phase [solid 
line] and quadrature [dashed line] beamformers) values for creating the 
lateral modulation during receive beamforming.



for calculating correlation function γ(Δm; m; n) defined by 
(14). The dashed lines in Fig. 7 show the actual assigned 
maximum lateral displacements. In calculation of the cor-
relation function, 2-d kernels were used, the axial size of 
the kernel being fixed to be the optimum value (0.5 µs) 
determined in [18], and the lateral size of a kernel being 
changed. In Figs. 7(b), 7(c), 7(d), and 7(e), the lateral 
sizes of kernels were set at 0.6 mm (Mc = 2), 1.2 mm 
(Mc = 4) (see the multimedia file for an example under 
this condition), 2.4 mm (Mc = 8), and 3.6 mm (Mc = 12), 

respectively. as shown in Fig. 7, standard deviations were 
reduced by the estimator consisting of 3 correlation func-
tions given by (25).

Fig. 8 shows rms errors of the estimated lateral dis-
placements obtained by the estimator given by (19) from 
the actual displacement, where the errors were evaluated 
from all the estimates except for those obtained at 10 
scan lines at each edge of the scanned region because the 
estimates at these scan lines were influenced by the shape 
of the Tukey window (not flat). as shown in Fig. 8, the er-
rors were reduced by increasing the size of the correlation 
kernel, and similar errors resulted from the kernel sizes 
greater or equal to 2.5 mm.

B. Comparison with Results Obtained by the Lateral 
Modulation Method

Fig. 9(a) shows rF echoes from the phantom ob-
tained by the lateral modulation method (in-phase 
beamformer), and Fig. 9(b) shows the lateral profiles 
of rF echoes at a depth indicated by the arrow in 
Fig. 9(a) obtained by in-phase and quadrature beam-
formers. as in the displacement estimation by the 
proposed method, changes in the phases of complex 
signals {g(x; n)} obtained by in-phase and quadrature 
beamformers were estimated by the correlation tech-
nique described in [16] to obtain lateral displacements 
{ux(n)} at 20 points of interest assigned along each 
scan line at axial intervals of 50 µm.

as in section III-a, the use of different lateral sizes of 
kernels used for calculation of correlation functions was 
examined. lateral displacements estimated by applying 
the motion estimator in [16] to complex signals {g(x; n)} 
obtained by the lateral modulation method are shown in 
Fig. 10(1). In Figs. 10(1-a), (1-b), (1-c), and (1-d), lateral 
displacements {ux(n)} were estimated using kernel sizes of 
0.6 mm (Mc = 2), 1.2 mm (Mc = 4), 2.4 mm (Mc = 8), 
and 3.6 mm (Mc = 12) (see the multimedia file for an ex-
ample under this condition), respectively. as in Fig. 10(1), 
lateral displacements obtained by applying the proposed 
motion estimator to {g(x; n)} are shown in Fig. 10(2) for 
different correlation kernel sizes. There were no improve-
ments by using the proposed motion estimator together 
with the lateral modulation method. as shown in Fig. 
11, rms errors of the lateral displacements obtained by 
the motion estimator in [16] were calculated from all the 
estimates shown in Fig. 10(1).

Iv. discussion

In this study, lateral displacements were estimated us-
ing the phases of complex signals generated by the Hilbert 
transform applied to ultrasonic echoes obtained by a con-
ventional beamformer. The phase shift due to the lateral 
displacement was estimated by the conventional correla-
tion technique, and a larger correlation kernel size in the 
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Fig. 5. radio frequency echo from a fine wire obtained by the lateral 
modulation method. (a) radio frequency echo re{g(x; n)} obtained by in-
phase receive beamforming, where re{·} means the real part. (b) lateral 
profiles at a depth indicated by the arrow in (a) obtained by in-phase 
and quadrature receive beamforming. (c) magnitude of spectrum of the 
echo signal re{g(x; n)} shown in (a) obtained by the 2-d Fourier trans-
form.



lateral direction was found to achieve better accuracy. Er-
rors in the estimated lateral displacements were reduced 
by increasing the kernel size, and similar errors were ob-
tained with kernel sizes greater or equal to 2.5 mm, which 
roughly corresponds to 3 times the width at −20 db of 
the maximum lateral ultrasonic field (about 0.8 mm). In a 
previous study, the estimation of axial displacements, the 
optimal kernel size in the axial direction corresponded to 
a pulse duration defined by the width at −20 db of the 
envelope of an ultrasonic pulse (about 0.4 mm) [18]. In the 
axial displacement estimation, a smaller kernel relative to 
the point spread function (0.4 mm) yielded good estimates 
because there were 2 to 3 oscillations during a pulse dura-
tion. on the other hand, there was no oscillation in the 
lateral direction (or more exactly, one oscillation because 
there was a peak in the lateral profile of the ultrasonic 
field). Therefore, a kernel size of about 3 times the point 
spread function was required to minimize the error.

To estimate the artery-wall motion using the phases 
of ultrasonic echoes, it is necessary to avoid the aliasing 
effect. Therefore, the frame rate fFr should be kept as 
high as possible. In general, motion of the arterial wall in 
the radial direction is larger than that in the longitudinal 
direction, and the oscillation frequency in the axial direc-

tion (= radial direction) is higher than that in the lateral 
direction (= longitudinal direction). Therefore, the alias-
ing limit for the radial motion (= axial motion) should be 
considered.

basically, using the change in the axial phase Δϕ, the 
axial velocity va is estimated as follows [19], [21]:

 v
c

f
fa =

4
,0

0

Df
p FR  (27)

where c0 and f0 are the speed of sound and the center 
frequency of ultrasound, respectively. In addition, a typi-
cal maximal velocity of the carotid arterial wall in the ra-
dial direction is about 10 mm/s. The frame rate required 
for the measurement of the axial motion at 10 mm/s is 
obtained by substituting va = 10 mm/s, Δϕ = π rad, 
c0 = 1500 m/s, and f0 = 10 mHz into (27) as follows: f
Fr = 4 × (10 × 10−3) × (10 × 106)/1500 ≈ 267 Hz. To 
achieve a frame rate higher than 267 Hz at a fixed pulse 
repetition frequency of 13156 Hz, the number of scan lines 
was reduced to 46 (this is the lowest available number of 
scan lines of the employed ultrasonic equipment).

as can be seen in Fig. 8, there is a trade-off between 
the accuracy and the kernel size (spatial resolution). 
When we want to estimate the global motion of an ob-
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Fig. 6. (a) radio frequency echoes from the phantom. (b) Tukey window used for frequency analysis of envelope signals of rF echoes. (c) Envelope 
signals of rF echoes. (d) Envelope signals after bias removal. (e) Imaginary and (f) real parts of analytic signals {y(x; n)}.



ject, a large kernel can be used for higher accuracy. on 
the other hand, it is necessary to use a smaller kernel 
to obtain the spatial distribution of lateral displacement, 
although the accuracy will be degraded. Therefore, the 
method should be optimized depending on the purposes, 
for example, a greater number of correlation functions in 
an estimator would reduce standard deviations, as shown 

in Fig. 7, at the expense of computational efficiency. In ad-
dition, further improvements would be required to achieve 
better accuracy with a smaller kernel. In this study, a 
linear relationship between the lateral displacement and 
the change in the phase of the complex signal obtained 
by the Hilbert transform was assumed. Fig. 12(a) shows a 
b-mode image of a fine wire (same as that in Fig. 5), and 
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Fig. 7. means and standard deviation of lateral displacements obtained by the estimators given by (1) Eq. (19) and (2) Eq. (25). (a) Tukey window 
used in the Hilbert transform. lateral displacements estimated by the proposed method with correlation kernel sizes of (b) 0.6 mm, (c) 1.2 mm, (d) 
2.4 mm, and (e) 3.6 mm. The 3 horizontal dashed lines in each figure (b)–(e) show the actual assigned displacements.



Fig. 12(b) shows a lateral profile of envelopes of rF echoes 
at a depth indicated by the arrow in Fig. 12(a). by apply-
ing the Fourier transform to the lateral profile shown in 
Fig. 12(b), a power spectrum, which is shown by the solid 
line in Fig. 12(c), was obtained. as shown by the solid 
line in Fig. 12(c), in general, the direct current component 
is largest (central spatial frequency is zero). Therefore, 
it is difficult to use the lateral phase with conventional 
beamformers. The dashed line in Fig. 12(c) shows a power 
spectrum obtained by applying the Fourier transform to 
the lateral profile after removing the direct current com-
ponent based on (26). In this case, the power spectrum 
is largest at a certain spatial frequency (≠ 0), and it can 
be considered that the lateral profile is fluctuating at the 
central spatial frequency (≠ 0), as in the lateral modula-
tion method. Therefore, a linear relationship was assumed 
in the present paper. In addition, correlation functions in 
a range from −1 to 1, which corresponded to a range from 
−150 µm to 150 µm in the lateral direction were used for 
estimation of lateral displacements. This region is much 
smaller than the size of the width at −20 db of the maxi-
mum lateral ultrasonic field. Therefore, the assumption of 
the linear relationship between the change in the lateral 
phase and the lateral displacement in such small range 
was considered to be appropriate, even when the over-
all relationship was not perfectly linear. To use a greater 
number of correlation functions, identification of a better 
function describing this relationship would be required.

In the present study, although it was assumed that there 
was no deformation, the proposed method could estimate 
the lateral displacements of a phantom under a specific 
degree of deformation. However, a method, in which the 
distortion of r(x; n) due to deformation of an object is 
taken into account, should be developed to improve the 
accuracy, and such method should be validated under the 
existence of various degrees of deformation.

In the present study, the results obtained by the pro-
posed method were compared with those obtained by 

the lateral modulation method. The results obtained by 
the lateral modulation method with the motion estima-
tor described in [16] were worse than those obtained by 
the proposed method, and the combination of the lateral 
modulation method with the motion estimator proposed 
in the present paper did not achieve any improvements. It 
could be considered from these results that some optimi-
zation might be necessary to obtain correctly modulated 
fields. Therefore, it cannot be concluded at present that 
the proposed method is better than the lateral modula-
tion method. nevertheless, the proposed method would be 
useful because it can be applied to the ultrasonic echoes 
obtained by conventional beamformers.

v. conclusions

In this study, a method was developed to estimate lat-
eral displacements using the lateral phase, which can be 
applied to ultrasonic echoes obtained by a conventional 
beamformer. In the proposed method, complex signals 
were generated by the Hilbert transform, and the phase 
shift due to the lateral displacement was estimated by cor-
relation-based estimators. The proposed method was vali-
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Fig. 8. root mean square errors of lateral displacements {ux,(0,1)(n)} ob-
tained by the proposed estimator given by (19) are plotted as a function 
of correlation kernel size in the lateral direction. The 3 curves show the 
errors in cases of actual lateral displacements of 0.1, 0.25, and 0.5 mm.

Fig. 9. radio frequency echo from the phantom obtained by the lateral 
modulation method. (a) radio frequency echo re{g(x; n)} obtained by 
in-phase receive beamforming. (b) lateral profiles of {g(x; n)} at a depth 
indicated by the arrow in (a) obtained by in-phase and quadrature re-
ceive beamforming.



dated using a cylindrical phantom mimicking an artery. 
as a result, the lateral displacements could be measured 
with an error of 13.5% of the true displacement of 0.5 mm, 
and the proposed method would be useful because it can 
be applied to ultrasonic echoes obtained by conventional 
beamformers.

appendix  
Hilbert Transform of lateral  

amplitude Profile

as expressed by (6), analytic signal y(x; n) of lateral 
amplitude profile s(x; n) is obtained by the inverse Fourier 

transform of S(fx; n) in the range of positive spatial fre-
quencies as follows:
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Fig. 10. means and standard deviations of lateral displacements obtained by the lateral modulation method with (1) motion estimator given in [16] 
and (2) that given by (19). means and standard deviations obtained with correlation kernel sizes of (a) 0.6 mm, (b) 1.2 mm, (c) 2.4 mm, and (d) 
3.6 mm in the lateral direction. The 3 horizontal dashed lines in each figure show the actual assigned displacements.



Eq. (28) can be expressed as follows:
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by defining ξ = ξ1 + ξ2, (31) is modified as shown in (34), 
see next page.
as can be seen in (34), the integration with respect to ξ 
corresponds to the Fourier transform of h′(x)*r′(x; n) and, 
therefore, the integration with respect to fx corresponds 
to the inverse Fourier transform of F[h′(x)*r′(x; n)], where 
F[·]means the Fourier transform. Thus, y(x; n) is expressed 
as y(x; n) = h′(x)*r′(x; n), which corresponds to (6).

similarly, analytic signal y(x; n + 1) in the (n + 1)th 
frame is obtained as described below. spatial distribution 
of reflection coefficient r(x; n + 1) in the (n + 1)th frame 
is expressed as r(x; n + 1) = r(x − ux(n); n). Therefore, 
complex spectrum R(fx; n + 1) is expressed as 
R f n R f n ex x

j f u nx x( ; 1) = ( ; ) 2 ( )+ × - p . Then, let us express 
R′(fx; n + 1) as R′(fx; n + 1) = R′(fx; n) · P(fx; n), where
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analytic signal y(x; n + 1) in the (n + 1)th frame is 
expressed as follows:
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by defining ξ′ = ξ1 + ξ2, (36) is modified as follows:
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Fig. 11. root mean square errors of lateral displacements estimated by 
the lateral modulation method with the motion estimator in [16] are 
plotted as a function of correlation kernel size in the lateral direction. 
The 3 curves show the errors in cases of actual lateral displacements of 
0.1, 0.25, and 0.5 mm.

Fig. 12. (a) b-mode image of a fine wire obtained by a conventional 
beamformer. (b) lateral profile of envelopes of received ultrasonic rF 
echoes at a depth indicated by the arrow in (a). (c) Power spectra of 
lateral profiles of envelopes. The solid line shows power spectrum of the 
envelope shown in (b). The dashed line shows power spectrum of the 
envelope that was obtained by removing the direct current component 
from (b) based on (26).
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again, by defining ξ = ξ′ + ξ3, (38) is modified as 
shown in (39), see above.

as in (34), the integration with respect to ξ corresponds 
to the Fourier transform of h′(x)*r′(x; n)*p(x; n) and, there-
fore, the integration with respect to fx corresponds to the 
inverse Fourier transform of F[h′(x)*r′(x; n)*p(x; n)]. Thus, 
y(x; n + 1) is expressed as follows:
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Eq. (40) corresponds to (11).
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