This is the appexdix for the paper "Propagation of Spontaneously Actuated Pulsive Vibration in Human Heart Wall and In Vivo Viscoelasticity Estimation" by Hiroshi Kanai published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Vol. 51, No. 11, pp. 1931-1942 (November 2005)

Appendix I

Theoretical Equations of a Lamb Wave Propagating along Viscoelastic Plate Immersed in Blood

For the asymmetric Lamb wave in Fig. 1, let us assume that the Lamb wave propagates in the positive x-direction along the plate. The potential ϕ of the primary (longitudinal) wave and the potential in plate, ψ, of the SV wave are respectively given by

$$
\begin{align*}
\phi & =A \sinh (\eta y) \exp \left(j k_{\mathrm{L}} x\right) \tag{A.1}\\
\psi & =B \cosh (\beta y) \exp \left(j k_{\mathrm{L}} x\right) \tag{A.2}
\end{align*}
$$

where A and B are amplitude constants, $j=\sqrt{-1}$, and k_{L} is the wave number. Using the wave numbers k_{p} for the primary wave and k_{s} for the secondary wave of the plate material, the

Fig. 1. Lamb wave with asymmetric mode of plate waves in the viscoelastic plate with thickness $2 h$. The SV-wave component (y-displacement) and longitudinal component (x-displacement) are coupled, and the Lamb wave then propagates along the x direction. Though a slightly higher order mode is illustrated, the lowest mode is probably dominant in actual vibration in the IVS.
following η and β are defined as

$$
\begin{align*}
\eta & =\sqrt{k_{\mathrm{L}}^{2}-k_{\mathrm{p}}^{2}}[\mathrm{rad} / \mathrm{m}] \tag{A.3}\\
\beta & =\sqrt{k_{\mathrm{L}}^{2}-k_{\mathrm{s}}^{2}}[\mathrm{rad} / \mathrm{m}] . \tag{A.4}
\end{align*}
$$

Let us assume that the myocardium is isotropic. Using the Lamb wave phase velocity c_{L}, the primary wave speed c_{p}, the secondary wave speed c_{s}, Lamé elastic constants λ and μ, and the myocardial density ρ_{m}, the wave numbers $k_{\mathrm{L}}, k_{\mathrm{p}}$, and k_{s} are described by

$$
\begin{align*}
k_{\mathrm{L}} & =\frac{\omega}{c_{\mathrm{L}}}[\mathrm{rad} / \mathrm{m}] \tag{A.5}\\
k_{\mathrm{p}} & =\frac{\omega}{c_{\mathrm{p}}}=\omega \sqrt{\frac{\rho_{\mathrm{m}}}{\lambda+2 \mu}}[\mathrm{rad} / \mathrm{m}] \tag{A.6}\\
k_{\mathrm{s}} & =\frac{\omega}{c_{\mathrm{s}}}=\omega \sqrt{\frac{\rho_{\mathrm{m}}}{\mu}}[\mathrm{rad} / \mathrm{m}] \tag{A.7}
\end{align*}
$$

where $\omega=2 \pi f$ denotes the angular frequency. The displacement u_{x} in the x-direction and u_{y} in the y-direction are thus given by

$$
\begin{align*}
& u_{x} \equiv \frac{\partial \phi}{\partial x}+\frac{\partial \psi}{\partial y}=\left\{j k_{\mathrm{L}} A \sinh (\eta y)+\beta B \sinh (\beta y)\right\} \exp \left(j k_{\mathrm{L}} x\right)[\mathrm{m}] \tag{A.8}\\
& u_{y} \equiv \frac{\partial \phi}{\partial y}-\frac{\partial \psi}{\partial x}=\left\{\eta A \cosh (\eta y)-j k_{\mathrm{L}} B \cosh (\beta y)\right\} \exp \left(j k_{\mathrm{L}} x\right)[\mathrm{m}] \tag{A.9}
\end{align*}
$$

From the stress-strain relationship with Lamé constants λ and μ for isotropic material, the stress $\sigma_{y y}$ normal to y-axis is given by

$$
\begin{align*}
\sigma_{y y} & \equiv(\lambda+2 \mu) \frac{\partial u_{y}}{\partial y}+\lambda \frac{\partial u_{x}}{\partial x}[\mathrm{~Pa}] \\
& =(\lambda+2 \mu)\left(\frac{\partial^{2} \phi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial x \partial y}\right)+\lambda\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial x \partial y}\right) \\
& =(\lambda+2 \mu)\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)-2 \mu\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial x \partial y}\right) \\
& =\mu\left\{\kappa^{2} \nabla^{2} \phi-2\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial x \partial y}\right)\right\}, \tag{A.10}
\end{align*}
$$

where

$$
\begin{equation*}
\kappa^{2} \equiv \frac{\lambda+2 \mu}{\mu}=\left(\frac{c_{\mathrm{p}}}{c_{\mathrm{s}}}\right)^{2} . \tag{A.11}
\end{equation*}
$$

Using the relation

$$
\begin{equation*}
\nabla^{2} \phi+k_{\mathrm{p}}^{2} \phi=0 \tag{A.12}
\end{equation*}
$$

the first term of the last equation of Eq. (A.10) is described as follows:

$$
\begin{align*}
\kappa^{2} \nabla^{2} \phi & =\left(\frac{c_{\mathrm{p}}}{c_{\mathrm{s}}}\right)^{2} \nabla^{2} \phi \\
& =\left(\frac{k_{\mathrm{s}}}{k_{\mathrm{p}}}\right)^{2} \nabla^{2} \phi \\
& =-k_{\mathrm{s}}^{2} \phi \tag{A.13}
\end{align*}
$$

Thus, using Eqs. (A.1) and (A.2), the stress $\sigma_{y y}$ of Eq. (A.10) is given by

$$
\begin{align*}
\sigma_{y y} & =-\mu\left\{k_{\mathrm{s}}^{2} \phi+2\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial x \partial y}\right)\right\} \\
& =-\mu\left\{\left(k_{\mathrm{s}}^{2}-2 k_{\mathrm{L}}^{2}\right) A \sinh (\eta y)+\left(2 j k_{\mathrm{L}} \beta\right) B \sinh (\beta y)\right\} \exp \left(j k_{\mathrm{L}} x\right) \tag{A.14}
\end{align*}
$$

On the other hand, using Eqs. (A.8) and (A.9), the y-direction shear stress in the plane normal to x-axis, $\sigma_{x y}$, is given by

$$
\begin{align*}
\sigma_{x y} & \equiv 2 \mu \times \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)[\mathrm{Pa}] \\
& =\mu\left\{\left(2 j k_{\mathrm{L}} \eta\right) A \cosh (\eta y)+\left(k_{\mathrm{L}}^{2}+\beta^{2}\right) B \cosh (\beta y)\right\} \exp \left(j k_{\mathrm{L}} x\right) \tag{A.15}
\end{align*}
$$

Since the plate is immersed in blood, the acoustic energy of the Lamb wave in the plate leaks into the surrounding blood medium. For the leaky component, the potential ϕ_{b} of the primary wave in the $x-y$ plane in blood is given by

$$
\phi_{\mathrm{b}}= \begin{cases}-C \exp \left(-\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y>0 \tag{A.16}\\ C \exp \left(\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y<0\end{cases}
$$

where k_{b} is the wave number in blood and C is an amplitude constant. The minus sign of the coefficient $(-C)$ of the first equation in Eq. (A.16) characterizes the asymmetric mode. Using the velocity c_{b} for the primary wave in blood, the following η_{b} and k_{b} are defined by

$$
\begin{align*}
\eta_{b} & =\sqrt{k_{\mathrm{L}}^{2}-k_{\mathrm{b}}^{2}}[\mathrm{rad} / \mathrm{m}] \tag{A.17}\\
k_{\mathrm{b}} & =\frac{\omega}{c_{\mathrm{b}}}[\mathrm{rad} / \mathrm{m}] \tag{A.18}
\end{align*}
$$

For the primary wave in blood leaked from the IVS boundary, the displacement u_{y} in the y-direction, the displacement u_{x} in the x-direction, and stress $\sigma_{y y}$ normal to the y-axis are
respectively given by

$$
\begin{align*}
u_{y} & \equiv \frac{\partial \phi_{\mathrm{b}}}{\partial y}[\mathrm{~m}] \\
& = \begin{cases}\eta_{\mathrm{b}} C \exp \left(-\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y>0 \\
\eta_{\mathrm{b}} C \exp \left(\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y<0\end{cases} \tag{A.19}\\
u_{x} & \equiv \frac{\partial \phi_{\mathrm{b}}}{\partial x}[\mathrm{~m}] \\
& = \begin{cases}-j k_{\mathrm{b}} C \exp \left(-\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y>0 \\
j k_{\mathrm{b}} C \exp \left(\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y<0\end{cases} \tag{A.20}\\
\sigma_{y y} & \equiv \lambda_{\mathrm{b}}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)[\mathrm{Pa}] \\
& =\lambda_{\mathrm{b}}\left(\frac{\partial^{2} \phi_{\mathrm{b}}}{\partial x^{2}}+\frac{\partial^{2} \phi_{\mathrm{b}}}{\partial y^{2}}\right) \\
& =\lambda_{\mathrm{b}} \nabla^{2} \phi_{\mathrm{b}} \\
& =-\lambda_{\mathrm{b}} k_{\mathrm{b}}^{2} \phi_{\mathrm{b}} \\
& =-\rho_{\mathrm{b}} \omega^{2} \phi_{\mathrm{b}} \\
& = \begin{cases}\rho_{\mathrm{b}} \omega^{2} C \exp \left(-\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y>0 \\
-\rho_{\mathrm{b}} \omega^{2} C \exp \left(\eta_{\mathrm{b}} y\right) \exp \left(j k_{\mathrm{b}} x\right) & \text { if } y<0\end{cases} \tag{A.21}
\end{align*}
$$

where λ_{b} is the Lamé constant in blood, ρ_{b} is the blood density $\left(=1.1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right), \partial u_{x} / \partial x=$ $-k_{\mathrm{b}}^{2} \phi_{\mathrm{b}}$, and $\partial u_{y} / \partial y=\eta_{\mathrm{b}}^{2} \phi_{\mathrm{b}}$, and the following relation is used.

$$
\begin{equation*}
k_{\mathrm{b}}=\omega \sqrt{\frac{\rho_{\mathrm{b}}}{\lambda_{\mathrm{b}}}} \tag{A.22}
\end{equation*}
$$

By applying the vanishing shear stress ($\sigma_{x y}$ of Eq. (A.15)) condition at the myocardium-blood interfaces $(y= \pm h)$, continuity of the normal stress ($\sigma_{y y}$ of Eqs. (A.14) and (A.21)), and the continuity of the displacement (u_{y} of Eqs. (A.9) and (A.19)) across the two interfaces at $y= \pm h$, the following three equations are obtained.

$$
\begin{align*}
\left.\sigma_{x y}\right|_{y= \pm h} & =\mu\left\{\left(2 j k_{\mathrm{L}} \eta\right) A \cosh (\eta h)+\left(k_{\mathrm{L}}^{2}+\beta^{2}\right) B \cosh (\beta h)\right\} \exp \left(j k_{\mathrm{L}} x\right) \\
& =\mu\left\{\left(2 j k_{\mathrm{L}} \eta\right) A \cosh (\eta h)+\left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{s}}^{2}\right) B \cosh (\beta h)\right\} \exp \left(j k_{\mathrm{L}} x\right) \\
& =0 \tag{A.23}\\
\left.\sigma_{y y}\right|_{y= \pm h} & =-\mu\left\{ \pm\left(k_{\mathrm{s}}^{2}-2 k_{\mathrm{L}}^{2}\right) A \sinh (\eta h) \pm\left(2 j k_{\mathrm{L}} \beta\right) B \sinh (\beta h)\right\} \exp \left(j k_{\mathrm{L}} x\right) \\
& = \pm \rho_{\mathrm{b}} \omega^{2} C \exp \left(-\eta_{\mathrm{b}} h\right) \exp \left(j k_{\mathrm{L}} x\right) \tag{A.24}
\end{align*}
$$

$$
\begin{align*}
\left.u_{y}\right|_{y= \pm h} & =\left\{\eta A \cosh (\eta h)-j k_{\mathrm{L}} B \cosh (\beta h)\right\} \exp \left(j k_{\mathrm{L}} x\right) \\
& =\eta_{\mathrm{b}} C \exp \left(-\eta_{\mathrm{b}} h\right) \exp \left(j k_{\mathrm{L}} x\right) \tag{A.25}
\end{align*}
$$

Since these three equations hold for all x, the term $\exp \left(j k_{\mathrm{L}} x\right)$ in both sides can be eliminated and the remaining equations are rewritten in the matrix form

$$
\left(\begin{array}{ccc}
2 j k_{\mathrm{L}} \eta \cosh (\eta h) & \left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{S}}^{2}\right) \cosh (\beta h) & 0 \tag{A.26}\\
\left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{S}}^{2}\right) \sinh (\eta h) & -2 j k_{\mathrm{L}} \beta \sinh (\beta h) & -\frac{\rho_{\mathrm{b}} k_{\mathrm{s}}^{2}}{\rho_{\mathrm{m}}} \exp \left(-\eta_{\mathrm{b}} h\right) \\
\eta \cosh (\eta h) & -j k_{\mathrm{L}} \cosh (\beta h) & -\eta_{\mathrm{b}} \exp \left(-\eta_{\mathrm{b}} h\right)
\end{array}\right)\left(\begin{array}{c}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

where the myocardial density ρ_{m} is introduced based on the relationship of $k_{\mathrm{S}}=\omega \sqrt{\rho_{\mathrm{m}} / \mu}$ of Eq. (A.7). For nontrivial solution of A, B, and C, the following determinant Δ of the 3×3 matrix should be zero.

$$
\begin{align*}
\Delta= & -\eta_{\mathrm{b}} \exp \left(-\eta_{\mathrm{b}} h\right)\left\{4 k_{\mathrm{L}}^{2} \eta \beta \cosh (\eta h) \sinh (\beta h)-\left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{s}}^{2}\right)^{2} \sinh (\eta h) \cosh (\beta h)\right\} \\
& +\frac{\rho_{\mathrm{b}} k_{\mathrm{s}}^{2}}{\rho_{\mathrm{m}}} \exp \left(-\eta_{\mathrm{b}} h\right)\left\{2 k_{\mathrm{L}}^{2} \eta-\left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{s}}^{2}\right) \eta\right\} \cosh (\eta h) \cosh (\beta h) \\
= & 0 \tag{A.27}
\end{align*}
$$

Therefore, the following function, termed $f\left(k_{\mathrm{L}}, k_{\mathrm{p}}, k_{\mathrm{s}}\right)$, should zero.

$$
\begin{align*}
f\left(k_{\mathrm{L}}, k_{\mathrm{p}}, k_{\mathrm{s}}\right) \equiv & 4 k_{\mathrm{L}}^{2} \eta \beta \cosh (\eta h) \sinh (\beta h)-\left(2 k_{\mathrm{L}}^{2}-k_{\mathrm{s}}^{2}\right)^{2} \sinh (\eta h) \cosh (\beta h) \\
& -\frac{\rho_{\mathrm{b}} \eta k_{\mathrm{s}}^{4}}{\rho_{\mathrm{m}} \eta_{\mathrm{b}}} \cosh (\eta h) \cosh (\beta h)=0 \tag{A.28}
\end{align*}
$$

This function is employed in Eq. (2) of Section III-B.

